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Abstract

THERAPEUTIC STRATEGIES AIMED

TO FACILITATE AXONAL REGENERATION AND FUNCTIONAL RECOVERY

FOLLOWING TRAUMATIC SPINAL CORD INJURY

By Woon Chow, B.S., B.S.

A dissertation submitted in partial fulfillment of the requirements for the degree of 
Doctorate of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2011

Major Director:  Raymond Colello, D.Phil.
Associate Professor, Anatomy and Neurobiology

Traumatic spinal cord injury (SCI) is a physically debilitating, emotionally 

devastating, financially costly, and life-changing condition that afflicts more than 

1,000,000 people in the United States alone.  Owing to the characteristic neuropathology 

and low regenerative capacity of the central nervous system, many victims of SCI are left 

permanently paralyzed.  Though the tissue damage caused by the initial insult almost 

certainly cannot be reversed, intensive research in recent years to elucidate the cellular 

and molecular events that follows has provided new grounds for optimism.  Accordingly, 
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in this dissertation, we present a number of potential treatment strategies aimed to address 

some of these pathological sequelae seen post-SCI so as to facilitate the regeneration of 

axons and the recovery of physiological functions.

After the initial traumatic insult, a prominent and lasting injury-induced 

proliferative response occur and results in the development of a gliotic scar that isolates 

the lesion from the surrounding viable tissue.  Although this process aids to prevent the 

spread of uncontrolled tissue damage, the scar nevertheless acts as a physical barrier to 

axonal regeneration.  Furthermore, cells within the scar are a major source of axon 

growth-inhibitory molecules such as chondroitin sulfate proteoglycans (CSPG) and thus 

the scar acts concomitantly as a biochemical barrier.  Concurrent to all this, inflammatory 

cells infiltrate the lesion and promote cell death through immunologic activation. 

Neuronal survival is also threatened from the lack of neurotrophic support caused by 

axonal severance.  Finally, the pathology culminates in the formation of a fluid-filled 

cyst, which represents a gap that further hinders axonal regrowth.

Since regeneration cannot physically occur in the presence of a cavity, we, by 

employing electrospinning techniques, generated a biocompatible matrix implant that can 

bridge and direct axonal elongation across the fluid-filled cyst.  Given the complex array 

and scope of pathological sequelae post-SCI, it is generally recognized that a 

multifaceted approach is required to successfully treat SCI.  In view of this, we presented 

novel approaches by which successful tried and true therapeutic strategies are combined 
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to generate an enhanced matrix.  An enzyme as well as a growth factor was incorporated 

into our matrix implants in order to respectively neutralize CSPGs and provide 

neurotrophic support.  Using in vitro assays, we were able to demonstrate excellent 

protein bioactivity after incorporation.  In vivo experimentation of these enhanced 

matrices is now ongoing.  To address the injury-induced proliferative response, which 

represents an on-ramp off-ramp obstacle that prevents axonal regeneration onto our 

matrix implant, we showed how X-irradiation can be utilized to moderate this response 

by killing dividing cells so as to facilitate a more efficient penetration of regrowing axons 

into and beyond the gliotic scar.  Finally, we demonstrate how a novel pharmacologic 

agent FTY720 can be used to attenuate the inflammatory response by preventing 

lymphocytic egress from lymphoid tissues.

Collectively, these ideas and experimental results represent novel therapeutic 

strategies that can be combined in order to bring about meaningful functional recovery 

after SCI.

xiv
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Chapter 1

Traumatic Spinal Cord Injury: the Epidemiological, 

Anatomical, and Pathological

Dissertation Synopsis

This dissertation investigates potential therapies that are directed at various 

therapeutic obstacles after traumatic spinal cord injury (SCI).  In Chapter 1, we discuss 

what is currently known about SCI, specifically the causes and classifications, pathology 

and associated therapeutic challenges.  In each of the following chapters, the discussion is 

then narrowed on a particular obstacle and a potential therapeutic strategy that addresses 

the obstacle.  Chapter 2 describes electrospinning and how that can be used to fabricate 

biocompatible implantable matrices to bridge the fluid-filled cyst.  The electrospinning 

discussion is expanded in Chapter 3 when we describe how these matrices can be 

supplemented with a neurotrophin and an axon growth-inhibitor neutralizing enzyme. 

Chapter 4 describes a preliminary study in which these enhanced matrices were 

implanted into a rat model of SCI.  Chapter 5 focuses on the injury-induced proliferative 

response and the potential of using X-irradiation to moderate this reaction.  These studies, 
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along with some concluding remarks, are summarized in Chapter 6.  In the appendix, we 

detail a potential pharmacologic intervention to suppress the inflammatory response.

Introduction

Traumatic injury to the spinal cord results in the severing of axons and cell death, 

leading ultimately to the disruption of communication pathways between the brain and 

distal targets and resulting in paralysis and loss of sensation.  A myriad of complex 

cellular and biochemical events follow the initial insult, which often further damages the 

cord parenchyma and reduces the permissiveness of the microenvironment to axonal 

regeneration.  Specifically, inflammatory cells infiltrate the lesion area and release toxic 

substrates, driving viable neurons and glia alike into apoptosis.  Glial cells at the border 

of the lesion epicenter react to the injury by hypertrophying and proliferating to form 

scar-like barriers and upregulating their expression of various axon growth-inhibitory 

compounds.  Concurrently, parenchymal destruction leads to the formation of a fluid-

filled cyst, resulting in a physical gap that further complicates the prospect of 

regeneration.  In short, the cellular and biochemical responses following SCI are 

numerous, complex, and possess certain elements of destruction.  Thus, potential 

treatments for SCI were generally unavailable until the last few decades.  And though 

little can be done to reverse the initial insult, through our increasing understanding of the 

pathology seen after SCI, new potential treatment strategies that target specific 

therapeutic obstacles can be devised and combined to bring about meaningful functional 

recovery.

2
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In this introductory chapter, we first present some general information about SCI 

including statistics, basic anatomy, and classifications before proceeding to discuss 

individually each of the major therapeutic obstacles that confront researchers and 

clinicians.  Later, in the remaining chapters, we shall describe our ideas and the 

investigations of these ideas for addressing each of these obstacles.

Epidemiological Statistics

The prevalence of SCI in the U.S. is often cited by the literature and various 

special interest groups to be from a conservative number of 200,000 (Berkowitz, 1998) to 

a higher estimation of 450,000 cases (National Spinal Cord Injury Association). 

Incidence is estimated to be approximately 11,000 cases each year (Berkowitz, 1998). 

However, a recent 2009 report from a project led by researchers at the University of New 

Mexico’s Center for Development and Disability suggests that there may be a gross 

underestimation of SCI prevalence in this country (Christopher & Dana Reeves 

Foundation).  The project, which included exhaustive surveys conducted on more than 

33,000 randomly sampled households, estimated that there may be an upward of 

1,275,000 people, or approximately 0.4%, of the U.S. population, currently living with 

SCI.  According to this newly generated report, more than 82% of the SCI cases were 

caused by trauma, with 28% of the cases resulting from occupational accidents, 24% 

from motor vehicle accidents, 16% from sport-related injuries, 9% from falls, 4% from 

violence-related injuries, and 1% from natural disaster-related injuries.  Paraplegia is 

documented in about 43% of SCI cases while quadriplegia in about 56%.  Of those 
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reported being paralyzed due to a SCI, 61% were males.  Currently, SCI costs the U.S. 

health care system approximately $40.5 billion annually, a four-fold increase from the 

estimated cost of 9.7 billion in 1998.  The considerable annual costs of living with SCI 

coupled with the overwhelming physical and emotional hardship suffered by both the 

patient and family make SCI an important public health concern that is worthy of finding 

a cure.

Spinal Cord Anatomy

Enclosed within and protected by the bony vertebral column in the spinal canal, 

the human spinal cord is a long, thin, soft, ovoid-shaped bundle of nervous tissue that 

extends inferiorly from the medulla oblongata at the level of the foramen magnum to 

typically the upper lumbar vertebral level.  Considered to be a part of the central nervous 

system (CNS) along with the brain, the spinal cord is similarly ensheathed by the three 

meninges, which include the outer dura mater, the arachnoid mater, and the innermost pia 

mater.  Cerebrospinal fluid is found in the subarachnoid space as in the brain as well as in 

the central canal, the adult remnant of the neural tube.  The peripherally located white 

matter of the spinal cord contains ascending and descending neural tracts of axons that 

act as signal transmission conduits between the brain and the rest of the body.  Damage to 

these tracts in a SCI causes a majority of the symptoms seen post-injury.  The centrally 

located gray matter contains neuronal cell bodies that are involved with motor control, 

reflexive loops, and central pattern generation.  Enlargements, which are portions of 

increased girth due to the greater amount of tissue needed to innervate the limbs, are 

4
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found at the cervical and lumbar levels.  In general across mammalian species, the more 

dorsal aspect of the cord contains tissue that are associated with afferent, or sensory, 

inputs and the more ventral aspect contains tissue that are associated with efferent, or 

motor, outputs.

The anatomy of the spinal cord and its surrounding structures plays a considerable 

role in explaining the favored level of injury in SCI.  SCI generally occur at the level of 

the cervical and lumbar cord, which is attributable to the presence of the enlargements at 

these locations.  Due to the compact physical space between the cord and the spinal canal 

at these vertebral levels, the spinal cord can easily be trapped and compressed if there is 

any orthopedic involvement when trauma occurs.  In contrast, mid-thoracic cord injuries 

are quite rare, since a small but significant space cushion exists between the cord and 

bone.

Spinal Cord Injury Pathological and Clinical Classification

Pathological Classification

Spinal cord trauma can be a result of any or the combination of the following: 

application of pressure such as stretching or squeezing, bruising, tearing, or crushing. 

The manner by which the spinal cord is injured has considerable influence on the 

prognosis as well as the therapeutic strategies involved.  Accordingly, a pathological 

classification, initially devised by Bunge et al. (1993), relates the manner by which the 

cord is injured to the gross appearance and histology of the cord seen at autopsies.  The 

four groups included in this classification are solid cord injuries, contusion/cavitation 

5
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injuries, laceration injuries, and massive compression injuries, with each of these types 

corresponding respectively to the manner of injury stated above.

Solid Cord Injuries

Solid cord injuries are SCI in which no gross defects are seen.  Grossly, the cord 

appears normal, with no softening, bruising, discoloration, or a compromise of the 

meninges.  However, histologically, sections show a loss of normal architecture, 

demonstrating the occurrence of damage (Figure 1.1B).  Solid cord injuries are rare and 

are only involved in about 10% of SCI cases.  The cause of solid cord injuries is still 

unclear, though inflammation is thought to play a major role in the development of these 

injuries.  It is suggested perhaps that a slight application of pressure on the cord, such as 

stretching or squeezing, which in itself is relatively harmless to cord tissue, is enough to 

trigger an inflammatory cascade.  The ensuing inflammation, as an insidious component 

of secondary injury, damages spinal cord tissue.  (Primary injury is the initial insult.)

Frequently, minor cases of SCI may not initially present with any clinical findings 

and only later does the patient begin to exhibit symptoms of a SCI.  This very fact 

supports the general notion that perhaps much of the tissue damage sustained after a 

primary SCI insult, especially in cases where cord anatomy was not drastically altered, is 

due to secondary injury.  Accordingly, the many notable potential therapeutic strategies 

to SCI and traumatic brain injury alike seen in the literature often target a component of 

secondary injury.

6



www.manaraa.com

Contusion/Cavitation Injuries

The second type, contusion/cavitation injuries, is the most common and is 

involved in more than half of all traumatic SCI cases.  Also known as percussive SCI, 

these injuries are usually caused by a dislocated vertebra or displaced discs and ligaments 

compressing and subsequently bruising the cord.  Grossly, there is no disruption of the 

pial surface despite the fact that often there are areas of hemorrhage in the central grey 

matter.  These areas eventually undergo liquefactive necrosis and the debris is 

subsequently cleared by inflammatory cells, ultimately resulting in the classical 

formation of a fluid-filled cyst (Figure 1.1C).  Concurrently, a prominent reactive 

astrogliotic reaction around the lesion site ultimately develops into a gliotic scar 

surrounding the cyst.

Laceration Injuries

The third type, laceration injuries, account for about 20% of SCI cases.  Often, 

these injuries are a result of broken fragments of vertebra cutting the cord.  Gun-shot and 

stab wounds are also responsible.  In contrast to contusion/cavitation injuries, rupturing in 

the pial membrane is apparent (Figure 1.1D).  As a consequence, extra-medullary 

fibroblasts migrate into the lesion site, deposit a substantial quantity of collagen, and 

ultimately form a mesenchymal scar.  The prognosis of laceration injuries is often poor 

since the dense scarring characteristically blocks any attempts of axonal regrowth or 

rewiring.  Minor functional improvements can often be seen in SCI patients post-trauma 

as the injury stabilizes, but this rarely occurs in laceration SCI.

7



www.manaraa.com

Massive Compression Injuries

Finally, in massive compression injuries, the cord is essentially crushed, usually 

from extensive orthopedic trauma.  The pathological evolution of these lesions is similar 

to that of laceration injuries due to the pial disruption.  Accordingly, considerable fibrosis 

and dural adhesion typically results (Figure 1.1E).  Less than a 20% of traumatic SCI 

cases are classified as massive compression injuries.

Most SCI cases can be classed as one of these four types.  However, some 

injuries, especially multi-level ones, may involve more than one of these pathologies. 

Outwardly, this pathological categorization scheme seems somewhat overly simplified, 

but nevertheless helpful when prognosticating the progression of a SCI.  

Clinical Classification

In contrast to the pathological classification, a clinical classification of SCI is 

based on the functional implications post-injury.  In general, SCI can be classified as 

complete, incomplete, or discomplete.  Complete injuries usually involve trauma so 

severe that there is total paralysis and sensation loss below the level of the lesion.  This 

clinical type frequently implies a total cord transection, which is an exceptionally 

uncommon event.  In contrast, incomplete injuries signify that some physiological 

function is preserved below the injury level.  The implication here is that the cord has not 

been completely severed.  In many cases of incomplete injury, the cord is generally 

anatomically intact but the injury has caused disruption in some but not all the neural 

tracts.  Finally, discomplete injuries appear to be clinically complete but 

8
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neurophysiologically incomplete.  Patients with this type of injury are completely 

paralyzed below the lesion, but they exhibit some brain influence on spinal cord function. 

This presentation of SCI has not been fully explained and the cause is still unclear. 

Generally, once a SCI patient is stable after admission, he or she often undergoes 

extensive testing to determine the completeness as well as the physiological level of 

injury.  This evaluation includes assessing the three major afferent and efferent spinal 

cord pathways, specifically the dorsal column tracts with pinpricks and the spinothalamic 

tracts with light touches at all dermatomes plus the corticospinal tracts with muscle 

strength tests on all major muscle groups.

These classifications convey the varieties and range of clinical and pathological 

consequences after SCI.  Accordingly, SCI treatment strategies must be tailored to the 

specific injury type.

The Obstacles to Successfully Treating Spinal Cord Injury

In this project, we were most interested in furthering our understanding of and 

testing improved potential therapies for contusion/cavitation typed SCI since as 

aforementioned, they are the most common cases clinically.  In the following sections, 

the therapeutic obstacles to successfully treating this percussive type of SCI are 

discussed.  These obstacles, as well as our therapeutic ideas for addressing them, are 

revisited in the remaining chapters individually.

In short, percussive injury to the cord in both humans and animal models results 

in a pathological cascade of cellular and molecular events that culminate in the 

9
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characteristic formation of a fluid-filled cyst enclosed by a cellular wall made by the 

proliferation of glial cells and subsequent scarring (Balentine, 1978; Wozniewicz et al., 

1983; Kakulas, 1984; Bresnahan et al., 1991; Bunge et al., 1993; Ito et al., 1997; 

Norenburg et al., 2004).  The cyst forms a physical gap within the cord parenchyma, 

preventing axons from crossing the lesion to reach downstream targets.  The gliotic scar, 

formed by the hypertrophy and hyperplasia of various cells in and around the lesion, 

presents a physical as well as biochemical barrier due to the increased cellular expression 

of compounds that inhibit growth cone migration (Lemons et al., 1999; Morgenstern et 

al., 2002).  In addition to these pathological hallmarks, inflammation, mentioned 

previously as a component of secondary injury, plays an insidious role in the promotion 

of cellular apoptosis, exacerbating the damage initially sustained by the primary insult 

(Anderson et al., 1985; Blight, 1992).  Furthermore, the loss of trophic support 

exacerbates neuronal cell death.  These SCI pathological features of scar development, 

inflammation, cavity formation, molecular inhibitors, and loss of trophic support are now 

discussed in greater detail.

Cyst Formation

Though cystic formations generally occur late in the pathologic evolution of the 

SCI lesion, we initiate our discussion with this topic since they represent the single most 

prominent obstacle to axonal regeneration.  Customarily found in contusion/cavitation 

injuries, fluid-filled cysts typically form at injury epicenters weeks to months following 

SCI (Balentine, 1978; Norenburg et al., 2004).  Cysts may have a singular, multiple, or 

10
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multiloculated presentation and a wall of gliotic scarring, deposited during the lesion-

isolation process, surrounds the cysts.  The cysts are essentially the end products of debris 

clean-up at the lesion site and they represent the final healed state of a CNS injury. 

Similar to cysts in that they are fluid filled, syrinxes, differ in that they possess a thicker 

and denser gliotic wall due to increased pressure in the cavity.  Syrinxes may exacerbate 

existing neurological deficits since adjacent cord parenchyma may be compress as the 

cavity increase in size.  Cavity formations are yet another obstacle in successfully treating 

SCIs.  Due to the lack of a solid substrate, this pathological endpoint represents a 

physical gap that prevents regenerating axons from crossing to reach their downstream 

targets.

To this end, in Chapter 2, we show how electrospinning was utilized to fabricate a 

bridging matrix.  Recognizing that an ideal bridging scaffold would be biocompatible, 

durable, porous, and directional such that it can spatially guide regrowing axons, we 

generated via electrospinning a matrix that possess all of these properties and 

demonstrated their excellent neurite-guiding ability in vitro.  Furthermore, in Chapter 3, 

in preparation for the assessment of these matrices in vivo, we show how we refined the 

electrospinning process by adopting an air-gap spinning system so as to generate 

implantable 3-dimensional cylindrical structures possessing the same qualities that are 

capable of filling the gap left within the damaged cord.  A preliminary test of these 

matrices in an animal model of SCI is presented in Chapter 4.

11
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Chondroitin Sulfate Proteoglycans

After SCI, glial cells within the scar and in the surrounding lesion zone proliferate 

and hypertrophy to form the gliotic scar.  In addition, these cells upregulate their 

expression of CSPGs (Lemons et al., 1999).  CSPGs are well-known inhibitors of axonal 

regeneration (McKeon et al., 1995; Canning et al., 1996; Gopalakrishnan et al., 2008; 

Yang and Schnaar, 2008).

Chondroitin sulfate is simply a sulfated glycosaminoglycan (GAG), which is a 

long unbranched polysaccharide consisting of a variable number of repeating 

disaccharide units.  One or more of these chains are often found attached to a core protein 

via a serine residue as part of a proteoglycan.  Depending on the core protein to which the 

GAG chain is attached, the entire molecule is called by a distinctive name.  Examples of 

CSPG molecules include aggecan, brevican, neurocan, phosphacan, versican, and NG2. 

The pattern of sulfation can be rather complex as each disaccharide possesses four 

possible positions for group attachment and the diseaccharide may be unsulfated or 

sulfated in 1, 2, or 3 positions.  For this reason, there can be a very large number of 

sulfation motifs which defines the individual binding site.

CSPGs are expressed almost ubiquitously and are found in the ECM of most 

tissues.  In addition to their structural role in the ECM, these molecules are important 

regulators in various biological processes involving cellular recognition, migration, and 

signaling (Brittis et al., 1992; Sheng et al., 2005).  In certain tissues, they provide very 

specific functions.  For example, CSPGs are a major component of cartilage and by virtue 

of their numerous tightly packed and highly negatively charged sulfate groups, generate 

12
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the electrostatic repulsion that provides much of the compression resistance.  In the 

nervous system, they contribute to the regulation of various CNS developmental 

processes, acting as a stop signal to neuronal and axonal growth cone migration (Powell 

et al., 1997; Cortes et al., 2009).

Upon injury to the CNS, there is a general massive upregulation of CSPGs at the 

lesion site and surrounding areas (Lemons et al., 1999).  Although this expression usually 

peaks during the first week post-injury, levels of CSPG usually stay high as the gliotic 

scar matures (Tang et al., 2003).  The production of a certain CSPG is attributable 

generally to a particular cell type.  Brevican and phosphacan are mainly products of 

astrocytes whereas versican and NG2 are almost exclusively expressed by 

oligodendrocyte progenitor cells (OPC) (McKeon et al., 1999; Asher et al., 2002; 

Bouslama-Oueghlani et al., 2005).  Neurocan is produced by both astrocytes and OPCs 

(Asher et al., 2000).

The exact mechanism by which CSPGs inhibit the regeneration of axon is still 

unclear.  Substantial evidence suggests that the sulfated GAG chains are the elements 

responsible.  Nevertheless, it is well-recognized that successful SCI therapies include an 

element that targets these nefarious molecules so as to neutralize their axon growth-

inhibitory property.  In vitro experimentation by various research groups with the 

bacterial enzyme chondroitinase ABC (ChABC), which cleaves the GAG chains, have 

shown a drastic reduction of the inhibitory activity of CSPGs (Iaci et al., 2007; Massey et 

al., 2008).  Furthermore, recent in vivo studies using ChABC demonstrated enhanced 

axonal sprouting and neuroplasticity as well as improved functional recovery (Bradbury 
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et al., 2002; Caggiano et al., 2005; Huang et al., 2006; Tester and Howland, 2007).  In 

view of these successes by others, in Chpater 3, we show how we integrate ChABC into 

our implantable electrospun matrices as well as present data from in vitro assays that 

demonstrate the extent to which the enzyme remained bioactive.

Neurotrophins

Neurotrophic factors, or neurotrophins, are small, secreted peptides that act on 

cells in the nervous system via specific receptors that activate intracellular signaling 

cascades to promote cell survival, growth, and differentiation (Markus et al., 2003).  In 

general, neurons projecting axons via specific tracts within the spinal cord respond to one 

particular neurotrophin or a collection of factors.

The nerve growth factor (NGF) family of neurotrophins includes the four related 

peptides that share structural and sequence homology: NGF, brain-derived neurotrophic 

factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4).  These factors can 

bind to two entirely distinct classes of receptors.  The first known targets, Trk 

(tropomyosin receptor kinase) receptors are a family of tyrosine protein kinase receptors 

that mediates high affinity binding.  Each of the Trk receptor members bind only with 

specific neurotrophins.  TrkA receptors, which are expressed by sympathetic, trigeminal, 

and dorsal root ganglion neurons as well as by cholinergic neurons of the striatum and 

basal forebrain, specifically recognize NGF (Barbacid, 2004).  TrkB receptors are 

activated primarily though their binding with BDNF and NT-4.  The principal targets of 

NT-3 are TrkC receptors, which have been shown to be expressed on developing 

14



www.manaraa.com

corticospinal neurons (Chen et al., 1996, Namiki et al., 2000; Iarikov et al., 2007).  In 

some cellular contexts, NT-3 is also able to bind TrkA and TrkB, though with less 

efficiency.  Activation of the Trk class of receptors results in the prototypical function of 

neurotrophins, namely the promotion of cell survival and growth.  The second known 

target (though first discovered) of neurotrophins is the p75 neurotrophin receptor 

(p75NTR), a member of the tumor necrosis receptor superfamily.  In contrast to the Trk 

family, all four mentioned neurotrophins are able to bind to p75NTR, although with 

much less but similar affinity.  The specific role of p75NTR is not entirely clear.  Due to 

their low affinity for the neurotrophins, some have suggested that p75NTR may act to 

take up excess concentrations and affecting neurons in a manner beyond survival and 

growth in such occasions.  The p75NTR is known to be highly expressed in certain 

developing neurons as well as in axotomized adult neurons, which suggests a 

physiological role in mediating the higher neurotrophin expression by the local glial cell 

population seen after trauma.  It has been demonstrated that p75NTR increases both the 

binding affinity and specificity for Trk receptor.  This is especially evident with NGF in 

that both p75NTR and TrkA are required for the efficient generation of high affinity 

binding sites (Esposito et al., 2001).  However, other studies have point to the role of 

p75NTR as a pro-apoptotic mediator.  Cells expressing P75NTR in the absence of Trk 

receptors may be driven to programmed cell death in the presence of a neurotrophin 

rather than surviving (Teng et al., 2005).  Another interesting observation related to SCI 

is the relationship between the p75NTR and Nogo-66 receptor.  The Nogo-66 receptor, 

with its downstream Rho kinase pathway, is responsible for mediating the inhibitory 
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effects on axonal growth of three notorious myelin-associated glycoproteins, specifically 

Nogo-A, myelin-associated glycoprotein and oligodendrocyte-myelin glycoprotein (Liu 

et al., 2002; Xie and Zheng, 2008).  The p75NTR receptor act as a co-receptor to the 

Nogo receptor complex and when p75NTR was knocked out in mice, outgrowth 

inhibition of axons was no longer observed (Wang et al., 2002; Wong et al., 2002).  In 

short, though the meaning of the association between P75NTR and Trk, with some 

seemingly synergistic and others antagonistic effects, is still quite controversial, it is 

apparent that there are independent and dependent roles and actions of these two types of 

receptors.

After ligand binding, the high affinity Trk receptors undergo dimerization and 

autophosphorylates tyrosine residues in their cytoplasmic domains.  The neurotrophins 

and its activated Trk receptors are subsequently internalized through clathrin-coated pits 

and conveyed retrogradely up the axon toward the neuronal soma.  This endocytosis and 

subsequent vesticular transport serves to bring the activated signal close to certain 

organelles, such as the nucleus, where the signal can be acted upon to bring about 

specific cellular responses by way of gene transcription.  Signaling in the neuronal cell 

body controls the more global cellular functions of survival, proliferation, and 

differientation (Jacobson et al., 1997).  In contrast, local signaling is also known to occur 

and has been shown to regulate growth cone motility (Thoenen and Barde, 1980).  In one 

study, Gallo et al. was able to demonstrate that the TrkA receptor mediated growth cone 

turning toward a localized source of NGF (1997).  The molecular mechanisms by which 

neurotrophins regulate growth cone motility are not well understood.  However, recently 
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acquired experimental evidence suggests that these Trk-dependent actions may converge 

downstream with the abovementioned Rho kinase pathway and that a local accumulation 

of actin filaments may result from an increase in intracellular calcium concentration 

(Gehler et al., 2004).

In general, neurons in the CNS obtain their trophic support from the target tissue 

to which their axons project and this secretion of neurotrophins by the target tissue 

prevents the associated neuron from initiating apoptosis.  Thus, a low maintenance level 

of neurotrophins is required to ensure neuronal survival.  Upon axotomy after SCI, the 

disconnected neurons no longer receive a survival signal and may be driven into 

programmed cell death.  However, studies have shown that exogenous introduction of 

neurotrophins after CNS injury rescues these axotomized neurons, ensuring cell survival 

and in many cases cause enhanced axonal regrowth (Namiki et al., 2000; Mitsui et al., 

2005; Blesch and Tuszynski, 2007).  Accordingly, also in Chapter 3, we describe the 

incorporation of NGF into our implantable electrospun matrices by way of alginate 

microspheres and present data from in vitro assays that demonstrate the extent to which 

the growth factor remained bioactive when incorporated.

Reactive Astrogliosis and Gliotic Scar Formation

In human percussive SCI, the reactive astrogliotic, or gemistocytic, response is 

characterized by cellular hypertrophy and injury-induced proliferation, which ultimately 

results in a gliotic scar that is classically seen around the boundary of the lesion epicenter 

(Figure 1.2).  This outcome brings about a number of neuroprotective benefits.  As a new 
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glia limitans forms, reactive gliotic processes interdigitate and become linked by tight 

junctions.  This functions to isolate the SCI lesion containing necrotic tissue debris from 

viable tissue in the periphery, resulting in the reestablishment of the integrity of the CNS 

microenvironment within and aiding to prevent a further spread of cellular destruction 

(Norenburg et al., 2004).  Astrocytes within the developing gliotic scar are known to play 

a homeostatic role in restoring extracellular ionic balance and uptaking of the excess 

excitatory neurotransmitters and other toxic metabolites that may have accumulated in 

the lesion and the surrounding cord tissue (Davies et al., 2006; White and Jakeman, 

2008).  Furthermore, as the gliotic scar forms, reactive astrocytes often extensively 

remodel the extracellular matrix (ECM) and lay down abundant deposits of basal 

membrane.  Analogous to wound contracture after skin injuries, this basal membrane can 

contract to bring together opposite margins of the lesion, shrinking the lesion as debris is 

cleared out.  In addition, the gliotic scar provides a cellular scaffold for inwardly 

migrating epithelial cells to revascularize the lesion site.

In contrast to the above benefits, the scar has been implicated in blocking axonal 

regeneration physically as well as biochemically via the expression of chondroitin sulfate 

proteoglycans (CSPG) and other inhibitory factors.  First causally suggested by Ramón y 

Cajal (1928), subsequent experimental results readily confirms that though regenerating 

CNS axons sprout growth cones, axonal regrowth and growth cone migration invariably 

stop at the gliotic scar border (Reier et al., 1986).  The cause of the physical barrier is still 

unclear.  Though the gliotic scar is sealed sufficiently to prevent the spread of damage 

peripherally from the lesion epicenter, many studies have shown that astrocytic processes 
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and their associated tight junctions do not create a physical impediment (Norenburg et al., 

2004).  However, there is a possibility that the basal membrane is capable of obstructing 

axonal regrowth due to its contractile properties, resulting in its dense architecture. 

Consequently, success in inducing regenerating axons to regrow past the scar to seek 

distal targets requires a physical alteration of the scar to some extent.

In view of the inability of regenerating axons to penetrate the scar to reach our 

implantable electrospun matrix scaffold and off on the opposite side, in Chapter 5, we 

present a potential non-invasive therapy in which single-dose X-irradiation is used to 

moderate the injury-induced proliferative response so as to increase the spatial separation 

between reactive cells, which may create small gaps to facilitate regeneration at the on-

ramp and off-ramp sites adjacent to the matrix.  The attenuation of cellular proliferation 

needs not be extreme since gliotic scarring nevertheless confers important 

neuroprotective benefits.

Edema and Inflammation

Edema is often the first gross sign following SCI that can be detected, usually 

radiographically.  This edema is probably due to the vascular changes, namely 

vasodilation and hyperemia, which occur early on in the injury response (Sharma et al., 

1993).  Specifically, a breakdown of the blood-spinal cord barrier, loss of cerebral 

autoregulation, and the consequent increased permeability of capillaries results in an 

exudation of plasma fluid into the extracellular space.  This vasogenic edema can cause 

an ischemia that may possibly be due to the increased hydrostatic pressure in the region. 
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In contrast to the brain, the spinal cord has a thicker and perhaps more rigid pial-glial 

zone, which can exacerbate this ischemic mechanism.  This ischemia can in turn cause a 

buildup of undesirable metabolites and excitatory neurotransmitters, causing more 

neurons in the vicinity to die (Stiefel et al., 2005).  Research completed at this institution 

has shown that perhaps more significant than vasogenic edema is the cytotoxic edema 

that may be caused by these events (Marmarou et al., 2006).  This mostly occurs in 

astrocytes, especially those with astrocytic end-feet adjacent to capillaries (Bullock et al., 

1991).

The basis for the increased permeability of the blood-spinal cord barrier is 

attributed generally to a host of secreted factors.  It is well-established that expressions of 

pro-inflammatory cytokines such as Interleukin (IL)-1, IL-3, and IL-6 as well as their 

associated receptors are strongly upregulated post-injury.  In addition, various 

complement components and tumor necrosis factor (TNF) were also observed to be 

increased in their expression.  These and a number of other factors, such as various 

matrix metalloproteinases, may be responsible for the enhancement of vascular 

permeability and the subsequent infiltration of immune cells.  Furthermore, the sustained 

elevations of particularly TNFα and IL-1β may cause neuronal and oligodendroglial cell 

death (Lee et al., 2000; Hermann et al., 2001; Cai et al., 2003).  Accordingly, blocking 

TNFα and IL-1β have shown to be neuroprotective in various models of CNS trauma 

(Nesic et al., 2001; Genovese et al., 2006).  Though it is recognized that cytokines play 

an important and seemingly destructive role in mediating the inflammatory reaction 
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following SCI, the full extent of involvement by these various pro-inflammatory factors 

on the secondary degenerative processes remains unclear.

As mentioned, the cytokine mediated vascular changes attract inflammatory cells 

into the lesion site (Trivedi et al., 2006).  As shown in animal studies, compared to post-

traumatic inflammation in brain injuries, SCI tends to elicit a more prominent cellular 

immune response (Schnell et al., 1999a).  Following identical laceration injuries 

delivered to mouse brain and spinal cord, higher numbers of neutrophils and activated 

macrophages were shown to be recruited to the SCI lesion site and their extent of 

infiltration was more profound.  In a subsequent study by the same group, similar results 

were obtained when non-traumatic injections of pro-inflammatory cytokines into the two 

different tissues—neutrophil and macrophage recruitment was always greater in the 

spinal cord (Schnell et al., 1999b).  Anatomical and molecular variabilities between the 

brain and spinal cord may account for these regional differences in inflammatory 

reactions (Tveten, 1976a, b).  Nevertheless, these results demonstrate that knowledge and 

data gleaned from studying CNS inflammation in the brain cannot be applied to SCI 

without further examination.

After injury to the cord parenchyma, blood monocytes, granulocytes, and 

lymphocytes readily migrate across the permeable blood-spinal cord barrier.  It has been 

demonstrated numerous times that immune cell infiltration into the SCI lesion site largely 

contributes to the secondary injury process and may considerably expands lesion volume 

(Dusart and Schwab, 1994; Blight et al., 1995; Glaser et al., 2004).  The earliest arrival of 

neutrophils usually occurs within 12 h with ED1 immunoreactive macrophages appearing 
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soon after (Carlson et al., 1998; Norenburg et al., 2004).  These cells phagocytose cellular 

and myelin debris and begin the intensive clean-up process that may continue for the next 

3 to 5 d.  By day 3, numerous fat-laden macrophages occupy the lesion site.  Though the 

process of debris removal in itself is beneficial, many researchers have suggested that a 

number of elements may perhaps be neurotoxic.  Neutrophils release a potent cocktail of 

reactive oxygen species and enzymes intended for a bacterial invasion.  It is almost 

certain that neutrophils confer no meaningful neuroprotection in the CNS post-injury 

given their foremost function as bactericidal cells.

Lymphocytes, in particular the T cell, have been implicated in promoting cellular 

apoptosis following the release of neural self-antigens and the resulting activation of 

immunological cascades after CNS injury (Popovich et al., 1996; Gonzalez et al., 2003; 

Ankeny et al., 2006).  In experimental trials, injection of activated T cells from SCI rats 

alone has shown to cause CNS injury in naïve animals (Popovich et al., 1996). 

Consequently, one element of a successful SCI therapy must include a means to modulate 

the inflammatory response so as to reduce cell death and preserve the enduring viable 

tissue parenchyma surrounding the lesion site.

Accordingly, in the appendix, we present a potential pharmacologic therapy that 

aims to induce lymphopenia following SCI.  By preventing lymphocytic egress from 

lymph nodes, we show the extent to which fingolimod, commonly known as FTY720, 

preserves cord white matter, improves bladder function, and enhances functional 

recovery.
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Summary

Figure 1.3 illustrates and summarizes the major therapeutic challenges posed by 

SCI that we have just now discussed.  Given the multitude and the variety of obstacles, 

SCI is a costly, debilitating, and life-changing medical condition that will require a 

combination of approaches to successfully treat.  In the following chapters, we will 

present our ideas and the investigations of these ideas for addressing each of these key 

challenges.
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Figure 1.1.  (A) Cross sectional histology of a normal human spinal cord at the cervical 
level.  (B) Cords in solid cord injuries display a loss of the normal tissue architecture. 
(C) Cystic formation in cord parenchyma in contusion/cavitation injuries.  (D) Pia is 
penetrated in laceration injuries.  (E) Massive compression injuries generally results in 
the pulpification of cord tissue and extensive hemorrhage.  Scale Bars (A to E) = 2 mm. 
Adapted from Norenberg et al. (2004).
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Figure 1.2.  (A) Longitudinal sections of a rat spinal cord, which received a contusion 
injury 14 d earlier, immunolabeled for GFAP (red).  Gliotic scarring is readily seen by 
the high intensity of labeling around the edge of the developing cyst located at the lesion 
epicenter.  (B) The same section immunolabeled for bromodeoxyuridine (green), a 
proliferation marker.  Scale Bars (A and B) = 1 mm.
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Figure 1.3.  A cartoon illustrating the various therapeutic challenges posed by 
contusion/cavitation SCI.  Adapted from Fitch and Silver (2008).
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Chapter 2

Evaluating Neuronal and Glial Growth on Electrospun 

Polarized Matrices

Introduction

Percussive injury to the spinal cord, in both human insults and animal models, 

results in the liquefactive necrosis of the tissue in and around the lesion site.  Commonly, 

a fluid-filled cyst is the final consequence of this process.  Because of the lack of a solid 

substrate, this late-stage pathological endpoint presents a physical gap which impedes 

axonal regeneration and functional recovery after spinal cord injury (SCI).  Though other 

therapeutic obstacles exist post-SCI, the cystic formation represents a single most 

formidable challenge to axonal regrowth.

To guide regenerating axons across this cavity, several research groups have 

investigated the use of bridging materials that include substrates derived from either stem 

cells (McDonald et al., 1999; Akiyama et al., 2002), support cells (Xu et al., 1995; Li et 

al., 1997), autologous grafts (von Wild and Brunelli, 2003; Houle et al., 2006), 

embryonic grafts (Reier et al., 1986), natural substances (Marchand et al., 1993), or 
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synthetic substances (Tsai et al., 2004; Wen and Tresco, 2006).  Many of these 

approaches have shown promise in attracting regenerating axons onto the prosthetic 

bridge.  However, documented cases of axons traversing these conduits to reach the intact 

tissue on the opposite margin of the lesion area are rare.  Consequently, successes in 

inducing axonal regeneration have not translated into appreciable recovery of function. 

Nevertheless, despite the failure of significant axonal regrowth on existing bridges, 

advances in generating conduits for growth across lesioned areas must be made to 

successfully restore function after SCI.

In a simplified view, an ideal bridging neural conduit would be made from a 

biocompatible material that contains either channels or fibers that spatially guide 

regenerating axons.  Since damage to the spinal cord induces necrosis that frequently 

affects multiple fiber tract systems, this bridge should fill the extent of the cyst area. 

Additionally, it should have a level of porosity that allows the inward migration and 

incorporation of supportive cells as well as the traversing axons.  Finally, the ideal bridge 

should have the capacity to deliver signaling factors in a controlled manner to aid in the 

attraction, directional growth, and viability of traversing regenerating axons.  One 

technique that has the capacity to generate such an ideal bridging prosthesis is 

electrospinning.  Similar in concept to electrospraying, electrospinning uses a high-

voltage electric field to generate extremely fine fibers that are deposited on a grounded 

collector to form a nonwoven mat (Bowlin et al., 2002).  Chemically, these mats can be 

electrospun from either extracellular matrix (ECM) proteins or synthetic polymers, both 

of which can be spun alone or in combination with other growth-promoting factors. 
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Physical properties of these matrices, such as fiber diameter, porosity and alignment can 

also be controlled (Fridrikh et al., 2003).  In the field of tissue engineering, the 

application of this technique has resulted in the generation of several biocompatible 

substrates such as growth-promoting dermal implants, cardiac patches, and synthetic 

vessels (Stitzel et al., 2001; Sun et al., 2005).  For example, studies show that interstitial 

fibroblasts and endothelial cells migrate readily into an implanted electrospun collagen 

matrix from surrounding tissue (Telemeco et al., 2005).  Once there, these cells 

proliferate and actively remodel this biological substrate, resulting in accelerated wound 

repair with less contracture.  More recently, electrospinning has been used to generate 

growth matrices for cortical stem cells (Yang et al., 2005).  Collectively, these studies 

indicate the potential utility of electrospining to create biocompatible substrates for use in 

injury repair.

In the study presented in this chapter, we examined the potential use of 

electrospinning to engineer a polarized matrix for axonal guidance.  This matrix, which 

was spun from the resorbable suture material, polydioxanone (PDS), was tested for 

biocompatility with cells of neuronal and glial origin, and the growth dynamics of these 

cells on the matrix were assessed in cell culture studies.  These experiments demonstrate 

that both the directionality and exuberance of axonal growth are controlled significantly 

by the physical and chemical properties of the underlying electrospun substrate. 

Controlling these two parameters of axonal growth are prerequisites to establishing a 

successful strategy for bridging lesioned areas in SCI.
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Materials and Methods

Electrospinning

Electrospun matrices were fabricated from the PDS II violet monofilament 

surgical suture (Ethicon) as described previously (Boland et al., 2005).  Briefly, for each 

matrix, 150 mg of 10% weight/volume of cut PDS filament was dissolved overnight in 

the solvent 1,1,1,3,3,3-hexafluoro-2-propanol. The solution was then transferred to a 5-ml 

syringe tipped with an 18-gauge blunt-end needle (Kontes) and the syringe mounted onto 

a syringe pump set at a delivery rate of approximately 30 ml/hr.  The needle was 

connected via a wire outfitted with an alligator clip to the positive output lead of a high 

voltage direct current (DC) power supply (Spellman CZE1000R) set to 22 kV.  The 

grounded rectangular mandrel, with a cross-section of 10 × 3 mm, was placed 20 cm 

from the needle (Figure 2.1).  An electric field was generated across the nozzle and the 

grounded mandrel, inducing a jet of solution to be drawn out from the syringe and 

resulted in the deposition of a solid fiber core onto the rotating mandrel (Taylor, 1964). 

By varying the rotation rate of the mandrel, as determined by a calibrated digital 

stroboscope (Shimpo Instruments DT-311A), aligned and random fibers with diameters 

of 2 to 3 mm could be generated (Figure 2.2).  Specifically, a faster rotation rate of 5000 

rpm was used to spin matrices of aligned fibers (aligned matrices) whereas a slower 

rotation rate of approximately 10 rpm or less generated randomly oriented fibers (random 

matrices).  Additionally, an even distribution of the fibers on the mandrel was achieved 

by allowing the mandrel assembly to translate (0.5 Hz).
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Scanning electron microscopy

To prepare the matrices for scanning electron microscopy (SEM), 1-mm squares 

of both aligned and random matrices were cut from the electrospun mat and sputter-

coated in gold.  Photomicrographs (750 ×) were taken of random areas in each matrix, 

digitized with a flatbed scanner, and analyzed for fiber alignment using 2-dimensional 

fast Fourier transform (2D FFT).

2-Dimensional Fast Fourier Transform Alignment Analysis

As previously described by this laboratory (Alexander et al., 2006), utilizing the 

FFT function of the ImageJ image processing software, an image containing a graphical 

representation of the frequency content was generated from a digitized, square, grayscale 

image of the elements to be analyzed.  Pixel intensities and the distribution of the 

intensities (frequency content) of this output image correlate to the directional content of 

the original image.  Pixel intensities were summed along a radius from the center to the 

edge of the image to quantify the relative contribution of objects oriented in that 

direction.  This summing was repeated at 1° increments around the image and the 360 

summations were plotted.  In this manner, a 2D FFT of an image containing randomly 

oriented elements results in relatively constant pixel intensities independent of direction. 

Theoretically, a radial summation of this type of data set should be represented as a flat 

line; however, because of edge effects associated with square images, an undulating plot 

with four small, symmetrical peaks results.  In contrast, a 2D FFT of an image that has 

elements that are aligned preferentially would result in higher pixel intensities along the 
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aligned direction.  Accordingly, when the radial summations are plotted, two peaks, 

representing the two angles (180° apart) associated with the aligned elements in an image 

are generally seen (Ayres et al., 2006, 2008).

Dorsal Root Ganglia Isolation and Culture

In this study, the potential of aligned matrices to influence the growth dynamics 

of extending dorsal root ganglion (DRG) neurites was tested.  A set of random matrices 

was used as controls.  In accordance with the Virginia Commonwealth University 

Institutional Animal Care and Use Committee, DRGs were dissected from embryonic day 

16 (E16) Sprague Dawley rats as described previously (Sharma and Bigbee, 1998). 

Briefly, following removal from the uterus, the developing spinal cord from each embryo 

was exposed anteriorly.  The entire cord was dissected from its rostral end and placed in 

Leibovitz L-15 media with 10% fetal bovine serum (FBS).  The attached DRGs were 

then plucked off with fine tip forceps.

Circles of aligned and random matrices of 8-mm in diameter were sterilized in 

100% ethanol, rinsed in Hank’s balanced salt solution, and secured on the bottom of a 35-

mm diameter Petri dish using hypodermic needles.  Using a dissection microscope, 

several DRGs were micropipetted onto each matrix and pinned in place with 0.15-mm 

diameter minuten pins (Austerlitz). Cultures were incubated at 37°C with a 95% air/5% 

CO2 gas mix in Eagle’s minimum essential medium with glutamine supplemented with 

10% glucose, 5% FBS and 0.01% 2.5 S nerve growth factor.  The medium was changed 

every 2 d, alternating between the above medium and medium containing the antimitotic 
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agent, 5-fluorodeoxyuridine (10-5 M), which limits the proliferation of Schwann cells in 

DRG cultures (Wood, 1976).  Following a 10-d incubation, the cultures were fixed in 4% 

paraformaldehyde in 0.1 M phosphate-buffered saline (PBS).  Following fixation, DRG 

cultures were immunostained for the β-tubulin neuronal marker TuJ1 (Covance). Cultures 

were first blocked for 30 min in a solution consisting of PBS with 10% FBS and 0.3% 

Triton X-100, incubated for 2 h in a 1:500 dilution of TuJ1 mouse primary antibody in 

PBS and visualized with a 1:200 dilution of Alexa Fluor 488 goat anti-mouse secondary 

antibodies (Invitrogen) in PBS.  Subsequently, 6 × digital, wide-field, fluorescence 

images of the DRG and its neuritic outgrowth were obtained using an Olympus BX51 

microscope.  For this study, DRGs were pinned on at least six matrices (three aligned and 

three random) and the experiment was repeated at least three times.

Astrocytic isolation and culture

In this study, the potential of aligned matrices to influence growth dynamics of 

astrocytes was tested.  A set of random matrices was used as control.  In accordance with 

the Virginia Commonwealth University Institutional Animal Care and Use Committee, 

rat primary astrocytes were isolated using methods described previously (McCarthy and 

de Vellis, 1980).  Isolated postnatal day 3 (P3) rat cortices were minced and dissociated 

mechanically and enzymatically.  Cells were seeded into T-75 poly-L-lysine-coated 

tissue culture flasks that contained Dulbecco’s modified Eagle medium/Ham’s F-12 

medium, 10% FBS, and 1% antibiotic-antimycotic agent, and allowed to proliferate until 

the population reached confluency.  During this time, media changes were made every 3 
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to 4 d.  To purify the resulting mixed glia culture upon confluency, cultures were shaken 

overnight in an incubator to remove non-adherent cells.  Two cycles of treatment with the 

selective replication inhibitor cytosine arabinoside were carried out subsequently to 

further purify the astrocytic population.

Circles of aligned and random matrices were placed into 10-mm diameter culture 

wells and seeded with enzymatically dissociated astrocytes at a concentration of 104 

cells/ml.  Cultures were incubated for 7 d in the astrocyte media described above and 

fixed using 4% paraformaldehyde.  Following fixation, astrocyte cultures were 

immunostained for the astrocytic marker, glial fibrillary acidic protein (GFAP) (DAKO). 

Cultures were incubated for 2 h in a 1:1000 dilution of the GFAP rabbit primary antibody 

in PBS and visualized with a 1:200 dilution of Alexa Fluor 568 goat anti-rabbit secondary 

antibodies (Invitrogen) in PBS.  Images of astrocytes grown on aligned and random 

matrices were obtained with a Leica TCS-SP2 AOBS confocal microscope.  For this 

study, astrocytes were seeded on at least six matrices (three aligned and three random) 

and the experiment repeated at least three times.

Astrocytes-Dorsal Root Ganglia Co-culture

To test the extent to which astrocytes affect the growth of DRG neurites on 

electrospun PDS matrices, DRGs were co-cultured with astrocytes that were first seeded 

on matrices as outlined above.  Specifically, astrocytes were grown on either aligned or 

random matrices for 10 d until confluent.  DRGs were then pipetted onto these astrocyte-

seeded matrices, pinned down and cultured for an additional 10 days.
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Immunocytochemistry was performed using a primary antibody cocktail of GFAP 

and TuJ1, and confocal images obtained for analysis.  To determine the length of DRG 

neuritic outgrowth on aligned matrices with and without astrocytes, a distance 

measurement was made from the center of the DRG to the furthest extent of overall 

neuritic outgrowth.  Student’s t-test was used to determine statistical significance.  For 

this study, astrocytes and DRGs were seeded and pinned respectively on at least six 

matrices (three aligned and three random) and the experiment repeated at least three 

times.

Results

Using the apparatus shown in Figure 2.1, PDS was electrospun onto a mandrel 

with a rotation speed of either 5000 rpm or approximately 10 rpm to fabricate matrices 

containing fibers with varying degrees of alignment.  SEM was then used to visualize the 

extent to which a mandrel speed of 5000 rpm generates aligned fibers (aligned matrix) 

and a mandrel speed of approximately 10 rpm generates randomly orientated fibers 

(random matrix).  Although the difference in fiber alignment between the two types of 

matrices was evident at the SEM level (Figure 2.2A and D), a more objective 

determination of alignment was desirable to establish whether fiber alignment was 

significantly different.  To achieve this, we employed a 2D FFT methodology.  Such an 

approach quantitatively analyzes the extent to which the population of fibers in the matrix 

is aligned with respect to each other, thereby establishing a general direction of alignment 

of the entire fiber population.  After executing the algorithm on a converted grayscale 
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SEM image cropped down to a square (Figure 2.2A and D), the immediate output of a 2D 

FFT is a frequency spectrum (Figure 2.2B and E). The distribution of the pixels in the 

frequency spectrum can be used to evaluate fiber alignment in an original data image.  A 

data image containing random elements produces a frequency spectrum with pixels 

distributed about the center in a symmetrical distribution (Figure 2.2B). Conversely, a 

data image containing aligned elements produces a frequency spectrum with pixels 

distributed in an elongated ellipse (Figure 2.2E).  Figure 2.2C and F are graphs of a 2D 

FFT analysis on representative images of a random and aligned matrix, respectively.  The 

height and width of the peaks indicate the uniformity of fiber alignment.  The axis of 

distribution of the pixels in the frequency spectrum reports the principal axis of 

orientation (Ayres et al., 2006, 2008).  Fibers electrospun at a high mandrel speed were 

displayed graphically as having a dominant orientation toward a specific direction 

(approximately 180°, or a vertical orientation, in this case), thereby indicating a 

significant degree of alignment for the general fiber population.  In contrast, for a random 

matrix, the presence of four small symmetrical peaks (associated with edge artifact) 

indicates that there is no preferential alignment.  Moreover, the degree of fiber alignment 

in both types of matrices is consistent between electrospun samples fabricated for this 

study and those used in subsequent experiments.

After confirming the matrix alignment, DRGs were pinned to matrices, cultured 

for 10 d, fixed and immunolabeled for the TuJ1 neuronal marker.  Representative, low-

power, fluorescent images of the DRGs on aligned and random matrices showed different 

patterns of neuritic outgrowth (Figure 2.3).  On a random matrix, neurites grew radially 
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outward from the ganglion without preference to any specific direction, generating a 

round, spokes-of-a-wheel appearance (Figure 2.3A).  In contrast, on an aligned matrix, 

most neurites grew preferentially along a particular axis (Figure 2.3B).  Using reflectance 

confocal microscopy, it was confirmed that this axis of growth was in the same 

orientation as the underlying fibers of the matrix (data not shown).  Although a few 

neurites were not oriented initially to the direction of the underlying matrix, most 

eventually turned and continued their extension in the direction of the underlying fibers. 

Additionally, neurites growing in the direction of the underlying matrix grew faster than 

those growing perpendicular to the aligned fiber axis or on random matrix.

An observation that is not apparent in these images but evident in cultures grown 

for extended periods is that neurites began to show signs of cellular deterioration, such as 

the presence of membrane blebbing and vesiculation (Figure 2.6A).  These changes are 

common in neurons grown in vitro for extended periods in the absence of supportive or 

ECM substrata.  Considering this and the fact that the matrices are generated from a 

resorbable material (PDS) that dissolves with time, we hypothesized that a glial substrate 

might provide a more stable, supportive interface between the resorbable matrix and the 

outgrowing neurites.  Accordingly, astrocytes purified from P3 rat cortices were seeded 

onto aligned and random matrices and grown for 7 d.  Subsequently, the matrices were 

fixed and immunolabeled for the astrocytic marker GFAP.  Confocal images of astrocytes 

grown on both types of matrices show that these cells grew readily on electrospun PDS 

(Figure 2.4).  However, astrocytes grown on a random matrix extend processes that are 

positioned more randomly (Figure 2.4A and C). This is in striking contrast to astrocytes 
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grown on an aligned matrix (Figure 2.4B and C), for which process extension mirrors the 

orientation of the underlying fibers.

To test the extent to which astrocytes might improve the growth of DRG neurites 

on electrospun PDS matrices, DRGs were grown on matrices pre-seeded with astrocytes. 

First, dissociated astrocytes were seeded on aligned and random matrices and incubated 

for 10 d before DRGs were pinned onto the astrocyte-seeded matrices and incubated for 

10 d.  Subsequently, the matrices were fixed and dual-immunolabeled for TuJ1 and 

GFAP.  Following 20 d of growth, astrocytes seeded on both matrices extended longer 

processes than after only 7 d of growth (Figure 2.5A and C).  Moreover, astrocytic 

processes were aligned to match the orientation of the underlying PDS fibers within each 

matrix, which is consistent with a shorter culture period.  DRGs grown on a substrate of 

randomly-oriented astrocytes grew radially outward from the ganglion without preference 

to any specific direction (Figure 2.5A and B).  Conversely, DRGs grown on a substrate of 

aligned astrocytes (Figure 2.5C and D) displayed a similar alignment and extended longer 

processes than when grown on a glia-free matrix (Figure 2.5F).  Many of the neurites on 

the aligned, astrocyte-seeded matrices reached the border of the matrix and continued 

growing on its opposite side.  In both cases (aligned and random), processes changed 

direction readily to grow along astrocytic processes (Figure 2.5E). Moreover, DRGs 

grown on either seeded matrix displayed less fasciculated outgrowth than observed on 

PDS matrices alone and appeared to be more robust, as evidenced by the lack of 

vesiculations and membrane blebbing (Figure 2.6).

41



www.manaraa.com

Discussion

In this study, we have examined the potential use of electrospinning to engineer a 

polarized matrix for axonal guidance.  By varying the rate of rotation of the mandrel, 

matrices containing aligned fibers and randomly oriented fibers were fabricated from 

PDS.  The degree of fiber alignment was determined visually by SEM and quantified by 

2D FFT analysis.  Both neurons and astrocytes were grown separately and in combination 

on these matrices to assess biocompatibility and growth dynamics.  Specifically, when 

E16 DRGs were placed on these matrices and allowed to grow for 10 d, the direction of 

the projecting neurites matched the orientation of the underlying PDS fiber population. 

Moreover, on aligned matrices, the length of neuritic outgrowth exceeded that seen on 

random matrices.  After 10 d in culture, however, neurites began to exhibit evidence of 

necrosis.  In view of this, we tested the extent to which cortical astrocytes are compatible 

with these matrices and whether their presence affects DRG growth.  When seeded on 

these PDS matrices, astrocytes grew robustly and the orientation of process outgrowth 

matched that of the underlying matrix.  When DRGs were grown on these glial 

substrates, they exhibited no evidence of necrosis and their neurites aligned with 

astrocytes and displayed longer process outgrowth than on aligned PDS matrix alone. 

Collectively, these experiments demonstrate the potential for electrospinning to generate 

an aligned matrix that influences both the directionality and dynamics of DRG neuritic 

growth.

In addition to generating an aligned matrix to influence the directionality of 

neuritic outgrowth, the process of electrospinning can be manipulated further to generate 
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matrices with additional characteristics that mimic more closely the in vivo environment 

of the central nervous system (CNS).  Specifically, ECM molecules such as collagen and 

elastin remain biologically active when electrospun into matrices (Boland et al., 2004). 

These experiments provide evidence that viable ECM molecules in the CNS can also be 

electrospun into matrices to influence neuritic outgrowth.  In our study, however, we 

elected to use the synthetic molecule PDS as the solute for electrospinning because of its 

proven biocompatibility, which is indicated by its inability to elicit an immune response, 

and its structural stability in biological tissue.  These characteristics prevent the matrix 

from being remodeled in a manner that compromises its fiber polarity within a short time 

frame, which is relevant when considering the use of this matrix to bridge lesioned areas 

of the CNS.  Specifically, the alignment of the fibers in the matrix will remain stable, 

allowing regenerating axons sufficient time to cross the lesion into healthy target tissue. 

Moreover, by seeding the PDS matrix with astrocytes, we have generated a cellular 

bridge that retains alignment stability while providing crucial trophic support.  In the next 

two chapters, further modifications to the electrospinning process to generate a scaffold 

that may be able to counter the inhibitory compounds seen after SCI as well as the testing 

of these superior matrices are discussed.
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Figure 2.1.  The electrospinning apparatus.  Key system components include a solution 
reservoir (syringe), nozzle (18-gauge, blunted, metallic needle), high-voltage DC power 
supply, and grounded target (rotating mandrel).
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Figure 2.2.  Generation of aligned and randomly oriented PDS matrix fibers.  (A) SEM 
shows more randomly oriented fibers in a representative random matrix, generated by 
using a slower mandrel rotation speed (approximately 10 rpm).  (B) Raw output of the 2D 
FFT alignment analysis of a random matrix.  The more radially symmetrical silhouette of 
the 2D FFT is consistent with fibers that are oriented in random directions.  (C) Radial 
plot of the summations of relative pixel intensity at a radius versus the angle (°).  The 
periodicity of the graph is caused by the inherent symmetry of the raw 2D FFT output. 
The smaller, broader peaks reflect a more random distribution of directionality.  (D) SEM 
showing more consistently oriented fibers in a representative aligned matrix that is 
generated using a mandrel rotation speed of 5000 rpm.  (E) Raw output of the 2D FFT 
alignment analysis of an aligned matrix.  The slender profile of the silhouette indicates 
fiber alignment.  (F) A taller, narrower peak at approximately 180° indicates the general 
direction in which the fiber population is oriented.  Scale bars (A and B) = 10 µm.
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Figure 2.3.  Fiber alignment of the electrospun matrix is conferred to pinned DRGs. 
Low-power, wide-field, fluorescent image of a representative DRG immunostained for 
TuJ1 (green) on matrix fixed 10 d after pinning.  (A) DRG on a random matrix fixed 10 d 
after pinning.  DRG neurites grown on a random matrix displayed a tortuous growth 
pattern that reflects the underlying matrix.  (B) In contrast to DRG grown on a random 
matrix, neurites grew preferentially in one direction (vertical in this image) that reflects 
the orientation of the underlying matrix fibers.  Scale bars (A and B) = 200 µm.
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Figure 2.4.  Fiber alignment of the matrix is conferred onto seeded astrocytes.  Confocal 
images of astrocytes, immunostained with GFAP (red), grown on a random (A) or 
aligned matrix (B) for 7 d after seeding.  In both instances, the orientation of the 
underlying matrix fibers is conferred to the astrocytic processes.  (C) The average peak 
value of the 2D FFT analysis (radial plot) on astrocytes seeded on matrices.  Astrocytic 
process alignment on random and aligned matrices is statistically different (p = 0.004). 
Scale bars (A and B) = 100 µm.
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Figure 2.5.  Aligned astrocytes influence the directionality and length of DRG neuritic 
outgrowth (A to D).  Confocal images showing DRG neurites (green) grown on 
astrocytes (red) seeded on either random (A and B) or aligned (C and D) matrices.  In the 
presence of randomly oriented astrocytes (B), the orientation of the neurites is radial, 
growing out from the ganglion in all directions, whereas neurites grown on an aligned 
astrocyte-seeded matrix (D) display a similar alignment.  (E) High-power, wide-field, 
fluorescent image showing that neurites change direction to grow along astrocytic 
processes.  (F) The length of DRG neuritic outgrowth on aligned matrices with or without 
seeded astrocytes.  Outgrowth is significantly longer (p = 0.008) when grown on 
astrocyte-seeded matrices.  Scale bars (A to D) = 100 µm.  Scale bar (E) = 30 µm.
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Figure 2.6.  DRGs on astrocyte-seeded matrices grew more robustly, as evidenced by 
lack of vesiculation and fasciculation.  DRGs grown for 10 days on (A) a PDS matrix 
alone in the absence of astrocytes and (B) on an astrocyte-seeded PDS matrix. 
Astrocytes cannot be visualized because of the filter selection for this fluorescent image. 
Scale bars (A and B) = 10 µm.
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Chapter 3

Evaluating the Incorporation of Nerve Growth Factor and 

Chondroitinase ABC into an Electrospun Scaffold by Utilizing 

an Alginate Delivery System

Introduction

One of the many obstacles to spinal cord injury (SCI) repair following trauma is 

the formation of a cyst that impedes axonal regeneration.  Accordingly, as described in 

the previous chapter, we examined the potential use of electrospinning to engineer an 

implantable polarized matrix for axonal guidance.  Briefly, in a series of in vitro studies, 

we found that matrix alignment can be conferred to extending neurites, demonstrating the 

potential for electrospinning to generate an aligned matrix that can be implanted into the 

cyst so as to guide regenerating axons post-SCI.

However, many other obstacles hinder axonal regrowth in addition to the cyst.  As 

previously described, astrocytes within the SCI lesion site proliferate, hypertrophy, and 

begin to express chondroitin sulfate proteoglycans (CSPG), which represent potent 

inhibitors to axonal regeneration.  At the neuronal level, axotomy of motor and sensory 
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neurons results in the loss of neurotrophic support by target tissue, furthering the extent 

of neuronal cell death.  Additionally, the presence of myelin debris, as a result of 

oligodendrocyte death, acts as a potent inhibitor to axonal regeneration.  Collectively, 

these cellular responses to SCI represent major impediments to axonal regeneration. 

Mono-therapies that address each of these obstacles to regeneration individually have 

resulted in only limited axonal regrowth and functional recovery.  To date, no single 

intervention has been devised to collectively address all of these obstacles to regeneration 

after SCI.

In view of this, we hypothesized that our previously tested electrospun matrix can 

be supplemented with compounds that can promote neuronal survival and neutralize the 

growth-inhibitory proteins associated with gliotic scar.  One crucial criterion for 

optimizing axonal regeneration following SCI is to promote the survival of neurons 

whose axons have been severed.  It is well-known that neurotrophic factors are produced 

in the central nervous system (CNS) following trauma (Dougherty et al., 2000; Krenz and 

Weaver, 2000).  Their presence mitigates injury-induced neuronal cell death and 

promotes axonal plasticity and regeneration (Bregman et al., 1999; Zhou et al., 2003). 

Furthermore, both in vitro and in vivo studies have begun to establish the extent to which 

particular trophic factors stimulate axonal regeneration of the varying descending motor 

tracts and ascending sensory systems of the spinal cord.  For example, one particular 

neurotrophic factor, nerve growth factor (NGF), is essential for the growth and survival 

of several populations of sensory neurons that project axons through the spinal cord 

(Tuszynski et al., 1994; Acosta et al., 2001).  Accordingly, in a series of in vitro dorsal 
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root ganglion (DRG) bioassays, NGF was incorporated into electrospun matrices with the 

use of an alginate delivery system and the extent to which NGF remains bioactive was 

assessed.

In addition, we sought to investigate the extent to which we could incorporate 

other proteins into the matrix that could facilitate axonal regeneration.  Specifically, it is 

well-documented that following CNS injury astrocytes become reactive and begin to 

express CSPGs, which are well-known inhibitors to axonal regrowth.  Many in vitro and 

in vivo studies have established that the enzyme chondroitinase ABC (ChABC) is capable 

of inactivating the inhibitory functions of these proteins.  Accordingly, in another series 

of in vitro bioassays, ChABC was incorporated into electrospun and the extent to which 

the enzyme remains bioactive was assessed.

Materials and Methods

Generation of Alginate Microspheres

Found in the cell walls of certain brown algae and seaweeds, alginate is a viscous 

gum that is used in many industrial, food processing, and biomedical applications as a 

waterproofing, thickening, or detoxification agent.  Its apparent ease of gelation and 

biocompatibility can be exploited, providing a delivery vehicle for NGF in our study. 

Specifically, almost any protein of interest can be encapsulated in alginate microspheres 

and dried and upon hydration, release their content in a sustained manner (Noushi et al., 

2005).
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Alginate microspheres were generated by electrospraying technique.  A solution 

of 0.05-mg/ml sodium alginate and 0.05-mg/ml protease-free bovine serum albumin 

(BSA) (used as a carrier) was first produced and subsequently the solute of interest in the 

quantity of interest was added to 1 ml of this solution.  The solution was then loaded into 

a 5-ml syringe tipped with an 18-gauge blunt-end needle (Kontes) and the syringe 

installed onto a vertically mounted syringe driver such that the needle was pointed down 

(Figure 3.1).  The needle was connected to the anode of a high voltage direct current 

(DC) power supply (Spellman CZE1000R) via a wire outfitted with an alligator clip.  A 

metal plate, which was connected to the cathode, was placed beneath the syringe driver. 

A 150-mm glass Petri dish filled with 2% calcium chloride solution was placed on the 

metal plate to facilitate collection of the alginate microsphere.  Upon switching on the 

power supply, the resulting electric field induced the formation of a fine aerosol mist of 

alginate and upon contact with the calcium chloride solution, microsphere formation 

takes place.  Microspheres were collected and washed by centrifugation in a 2% calcium 

chloride solution supplement with 10% isopropanol and finally pelleted and the supernate 

removed.  To further dry the alginate, the remaining sediment is diluted 1:4 in 

1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) by volume and the mixture is placed in a 

syringe.  At this point, the HFIP, being the densest liquid in the mixture will settle to the 

bottom and it is subsequently dispensed, leaving the semi-dry alginate microspheres in an 

interface layer just above.  After dispensing the bulk of the HFIP, the tri-layered mixture 

is deposited in another container and by way of yet another syringe and fine hypodermic 

needle, the bottommost and topmost layers are removed to a greatest extent possible 
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without disturbing the middle layer containing the microspheres.  Finally, the remaining 

middle layer is frozen in liquid nitrogen and subsequently lyophilized.  The alginate is 

ready for use after rehydration.

Although the collection rate is incredibly difficult to measure and a 100% 

collection cannot be assumed, it is estimated that conservatively that we collect at least 

50% of the microspheres that can potentially form.  With that in mind, 5 µg of NGF 

(Invitrogen) was incorporated into the alginate microspheres such that when 

microspheres were allocated to individual cultures, the amount of NGF contained in the 

microspheres would have the same order of magnitude as compared to the amount 

contained in DRG culture media.  In contrast, control microspheres were generated with 

5 µg of protease-free BSA.

Dorsal Root Ganglia Isolation

DRGs were isolated from embryonic day 16 (E16) Sprague Dawley embryos as 

described previously in Chapter 2.  Briefly, embryos were removed from the uterus of a 

gravid rat and dissected open anteriorly to expose the developing spinal cord.  The entire 

cord was then dissected free from its rostral end and placed in Leibovitz L-15 media with 

10% fetal bovine serum (FBS).  The attached DRGs were then plucked off with fine tip 

forceps.
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Nerve Growth Factor Bioassay

To test the effectiveness of using alginate to deliver NGF, dissected DRGs were 

placed into poly-L-lysine-coated wells of a 48-well plate.  Each batch of alginate 

microspheres were rehydrated in culture media.  Assuming 50% collection, as previously 

discussed, a volume of media containing a desired quantity of NGF, which is 

incorporated in the microspheres, can be calculated.  After ensuring a uniform 

distribution of the microspheres, a calculated volume containing microspheres having a 

desired quantity of NGF that would ultimately provide a concentration of 0.3 µg/ml in the 

culture was transferred into Transwell membrane inserts and the inserts were placed in 

wells containing DRGs.  In normal DRG culturing conditions, a concentration of 0.1 

µg/ml is used.  Since the microspheres do not release their contents all at once, a higher 

starting concentration was desired.  Microspheres containing BSA were similarly 

deployed to act as controls.  Incubation media consisted of Eagle’s minimum essential 

medium with glutamine supplemented with 10% glucose and 5% FBS.  Additional 

negative and positive controls were set up by incubating DRGs with NGF-free and NGF-

containing media, respectively.  A schematic of the experimental setup is shown in 

Figure 3.3.  This assay was performed three times per animal with populations of E16 rat 

DRGs from four different animals.

To visualize the DRGs, the cultures were first fixed in 4% paraformaldehyde and 

subsequently immunolabeled for the β-tubulin neuronal marker TuJ1 (Covance) as 

previously described in Chapter 2.
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To quantify the extent of growth exhibited by the DRG cultures, the area occupied 

by the DRG neuritic processes was measured.  Wide-field fluorescence images of the 

DRGs were obtained and loaded into Adobe Photoshop.  Using the “contrast” tool, the 

contrast of the image is increased such that the colored pixels depicting neuritic processes 

reach maximum color intensity.  These pixels were then counted and since each pixel has 

an equivalent area, an actual area can be estimated without bias.

Electrospinning

As before, polydioxanone (PDS) was again used to fabricate matrices in this 

study.  However, instead of using a rotating grounded mandrel, an air-gap electrospinning 

system was adopted.  Air-gap electrospinning utilizes two separate fixed grounded posts 

in which the solution jet whips back and forth between the grounds, resulting in the 

deposition of fibers between the posts.  The rationale for migrating to this system is that 

this methodology offers superior fiber alignment.  In addition, this system allows for the 

spinning of 3-dimensional cylinders, which is required when these matrices are ultimately 

tested in animal models of SCI.

Briefly, for each matrix, a PDS filament was dissolved in the solvent HFIP at a 

concentration of 125 mg/ml and the solution was deposited in a syringe, which was 

mounted onto a syringe driver set to deliver 5 ml/hr.  Though the exact placements of the 

various electrospinning components differed between runs and required a bit of trial and 

error for the optimal positioning of the two grounded posts, generally the air gap between 
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posts was set between 3 to 5 cm and the assembly containing the posts was placed no 

more than 20 cm away from the nozzle.

Chondroitinase ABC Bioassay

To test the extent to which ChABC remains bioactive when the enzyme is 

electrospun into matrix directly, a stripe bioassay was employed.  Aggrecan, a CSPG 

known to inhibit axonal growth (Lemons et al., 2003), was deposited in stripe lane 

fashion via a micropipette onto poly-L-lysine-coated Thermanox cover slips.  Upon the 

drying of the aggrecan, DRGs were pinned onto the cover slips between the CSPG lanes 

and the cover slips were placed in Petri dishes containing NGF-added DRG culture media 

(formula described previously).  ChABC (0.5 U per matrix) was mixed into the PDS 

spinning solution and matrices were fabricated.  After spinning, these matrices were cut 

into small pieces such that each piece contained enough ChABC to supply a 

concentration of 0.05 U/ml in culture conditions.  After sterilizing in 70% ethanol, a 

piece of the cut ChABC-containing matrix was placed in each experimental dish while a 

piece of the cut BSA-containing matrix was placed in each control dish.  A schematic of 

the experimental setup is shown in Figure 3.5.  This assay was performed three times per 

animal with populations of E16 rat DRGs from four different animals.

To visualize the DRGs and aggrecan lanes, the cultures were first fixed in 4% 

paraformaldehyde and subsequently immunolabeled for the β-tubulin neuronal marker 

TuJ1 (Covance) and the CSPG marker CS-56 (Sigma).  In addition to the staining steps 
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outlined in Chapter 2, a denaturing step utilizing 2-M hydrochloric acid is included 

before blocking.

Results

Once we established that electrospinning can be used to generate a biocompatible 

bridge that provides directionality to axonal regrowth (Chapter 2), we next sought to 

establish the extent to which proteins that facilitate regeneration can be incorporated into 

the bridging matrix.  First, we sought to supplement the matrices with a neurotrophin, 

namely NGF, via the use of an alginate delivery vehicle.  NGF-containing alginate 

microspheres of uniform diameter were produced via electrospraying (Figure 3.2).  To 

test the effectiveness of using alginate to deliver NGF and the extent to which the 

neurotrophin remains bioactive, DRGs, which are a clusters of neurons that convey 

sensory information through the spinal cord and require NGF for their survival, were 

cultured in wells of a 48-well plate under the following conditions: in the absence of 

NGF in the media, in the presence of NGF in the media, in the presence of BSA-

containing microspheres, and in the presence of NGF-containing microspheres. 

Following 3 d of incubation, DRG neurites displayed predictably scant outgrowth in the 

absence of NGF (Figure 3.3B).  In the presence of NGF in the culture media, neuritic 

outgrowth was also unsurprisingly evident (Figure 3.3D).  However, the NGF-induced 

neuritic outgrowth was even more pronounced in cultures where DRGs were exposed to 

NGF-containing alginate microspheres (Figure 3.3F).  The readily apparent difference in 

the extent of outgrowth between NGF in media and NGF supplied by the alginate is 
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likely the result of the gradual increase in concentration of NGF in the media with time. 

To quantify the extent of outgrowth exhibited by the DRG cultures, the area occupied by 

the neuritic processes of each DRG was measured by counting pixels of digital images. 

The group means of the estimated area occupied by a DRG are shown in Figure 3.4. 

Finally, electrospun PDS matrices containing NGF-incorporated alginate microspheres 

were fabricated and tested on DRG cultures and similar results were obtained (data not 

shown).

We next sought to investigate the extent to which we can incorporate other 

proteins of interest into the matrix that could facilitate axonal regeneration.  Specifically, 

as mentioned previously, ChABC has been shown in numerous occasions its ability to 

elicit improved axonal regrowth and in some cases functional recovery following SCI by 

neutralizing the inhibitory nature of CSPGs.  In view of its success, we sought to 

incorporate ChABC into electrospun matrices as another means of making the post-SCI 

microenvironment more growth permissive.  Since reactive astrogliosis and gliotic scar 

formation have a longer time horizon, there needs to be a somewhat delayed yet sustained 

release in order for ChABC to be useful.  Accordingly, it was decided that ChABC be 

incorporated directly into the PDS matrix during the electrospinning process.  To test the 

extent to which enzyme remains bioactive in the matrix, DRG neurons were cultured 

between lanes of aggrecan, a known CNS CSPG, and an appropriately sized piece of 

matrix incorporated with or without ChABC was placed in each culture.  Following 7 d 

of incubation, in the absence of the enzyme, DRG neurites avoided the aggrecan lanes 

thereby demonstrating the extent to which CSPGs can inhibit axonal growth (Figure 

65



www.manaraa.com

3.5B).  In contrast, DRGs grown in the presence of the enzyme, which is released from 

the matrix, displayed no inhibition and readily grew across the aggrecan lanes (Figure 

3.5D).  These results demonstrate that the enzyme is released from the matrix in a 

bioactive form and neutralizes the axon growth-inhibitory properties of CSPG.

Collectively, these studies point toward a novel approach by which a 

biocompatible scaffold can be implanted into the fluid-filled cyst post-SCI, providing 

regenerating axons with a directional path across the lesion site as well as trophic and 

inhibitor-neutralizing support in a single package.

Discussion

One of the many pathologic obstacles of spinal cord repair following contusive 

trauma is the formation of a fluid-filled cyst across which regenerating axons have to 

traverse in order to reinnervate their distal targets.  To this end, in Chapter 2, we 

examined and demonstrated the potential use of electrospinning to engineer an 

implantable directional matrix for axonal guidance.  In view of the recognition that 

successful SCI therapies require a multifaceted tactic, we proposed a novel approach of 

incorporating into electrospun guidance matrices pharmacologic agents that can promote 

neuronal survival and neutralize inhibitory molecules associated with the gliotic scar. 

Specifically, NGF was encapsulated into electrospun alginate microspheres and the 

extent to which this protein remains bioactive was assessed with DRG bioassays.  These 

microspheres were placed in Transwell membrane inserts over the ganglia so as to 

provide the only source of NGF in the culture.  Their presence supported vigorous 
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neuritic outgrowth in contrast to control microspheres containing only albumin.  The 

bioactivity of NGF was similarly preserved when NGF-containing microspheres were 

incorporated into electrospun matrices.  We next sought to investigate the incorporation 

of ChABC into the matrix as it has been previously shown that this enzyme can reduce 

the axonal growth-inhibition of various CSPG.  Stripes of aggrecan, a CSPG found in the 

CNS, were placed on cover slips with DRGs pinned in between the inhibitory lanes.  In 

control cultures, DRG neurites did not extend onto aggrecan lanes.  However, upon 

exposure of the cultures to ChABC-incorporated matrices, the growth-inhibitory nature 

of aggrecan was neutralized and neurites grew extensively across the stripes. 

Collectively, these experiments point toward a novel SCI therapeutic approach of 

generating electrospun scaffolds that can directionally guide axons across the lesion site 

while providing trophic and inhibitor-neutralizing support.

A remarkable observation that was made in the present study was the dramatic 

difference in the outgrowth pattern of DRGs when cultures were exposed to NGF in the 

media versus NGF in the alginate microspheres.  When DRGs were exposed to NGF in 

the culture media, the DRG displayed a growth that was prototypical—neurites grew 

radially and linearly outward from the ganglion and producing a round, spokes-of-a-

wheel appearance.  When DRGs were exposed to the alginate microspheres containing 

the NGF, the neurites similarly grew outward radially from the ganglion.  However, the 

appearance of the neuritic processes in this experimental perturbation was not linear, but 

highly branched.  In these cultures, nearly all the neuritic processes were seen to 

crisscross and overlap over and over at almost all locations occupied by the DRGs.  Thus, 
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in view of our attempt to measure the area occupied by the neuritic processes by way of 

counting pixels in high resolution digital images and our subsequent detection of 

quantitative differences in the amount of growth between experimental groups, we 

surmised that we probably still underestimated the extent of growth in the culture 

exposed to the alginate microspheres.  Since the amount of microspheres that was 

initially deposited in these experimental cultures was determined assuming a 50% 

collection estimate after electrospinning, it was first suggested that the dramatic 

outgrowth seen was perhaps due to a much higher concentration of NGF, which could 

have potentially reached at much as six times the level used in the positive control culture 

if the NGF was release all at once from the alginate.  As introduced in the first chapter, 

the low-affinity p75 neurotrophin receptor (p75NTR) may act as a sink for the excess 

NGF and synergizes with the tropomyosin receptor kinase (Trk) receptor, specifically 

TrkA, to produce the extraordinary branched pattern of DRG process outgrowth seen. 

However, in a side experiment where DRGs were exposed to 10µg/ml of NGF (ten times 

the normally used concentration), the branched pattern of outgrowth was not observed.  A 

second explanation is that perhaps the alginate may have some synergistic effect with the 

NGF.  Though no known mechanism would suggest that this would occur, we 

nevertheless tested this hypothesis in yet another side experiment where DRGs were 

exposed to NGF in the culture media while blank alginate microspheres were deposited 

in the cultures.  Again, only the typical radially linear outgrowth pattern was seen.  A 

third possibility that may cause the dramatic branching is that perhaps the neurons 

respond to a gradual increase in NGF concentration in the media from the alginate 

68



www.manaraa.com

release.  Such an increase of neurotrophin may result in a temporal shift of the cellular 

profile of activated receptors.  The p75NTR, having low affinity to the neurotrophins, 

would not bind the NGF early on during the experiment but would bind later when the 

NGF concentration in the media increased.  Though we did not attempt to prove this 

hypothesis, this explanation can be established with a simple experiment where DRGs 

would be exposed to a gradually increasing concentration of NGF.

Another notable observation involves the ChABC-CSPG stripe bioassays. 

Though DRG neurites undoubtedly grew over the aggrecan lanes when exposed to 

ChABC, the DRG processes displayed a webby fasciculated appearance.  As mentioned 

in Chapter 2, it is well-known that neurites often fasciculate when elongating on a less 

than optimal substrate and that cell adhesion molecules and their interactions with the 

substrate play a significant role in this response (Acheson et al., 1991; Honig and 

Rutishauser, 1996; Tang et al., 1994).  In an in vitro study, Snow et al. demonstrated how 

DRG neurites readily fasciculate upon contact with locales containing very low 

permissive concentrations of CSPGs, stayed fasciculated while elongating over such 

areas, and defasciculated upon leaving the CSPG zone (2003).  While ChABC was not 

employed in the study completed by Snow et al., their results show that even a minute 

amount of an inhibitor, though not able to outright prevent outgrowth over the inhibitory 

areas, was able to cause neuritic fasciculation.  In our study, ChABC cleaved the 

glycosaminoglycan chains on the aggrecan molecules, which is known to reduce the 

inhibitory nature of the CSPGs.  However, though less understood, there are also direct 

protein core effects, which may partially explain the fasciculation seen in our cultures. 
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Hence, in our study, while the ChABC is able to reduce the inhibition of the aggrecan 

such that outgrowth is possible on the CSPG lanes, the reduction is not enough to cause 

defasciculated growth.  Fasciculated growth is not necessary undesirable, as it has been 

suggested that fasciculation may promote axonal pathfinding and prevent deviant 

sprouting post-injury (Snow et al., 2003).

In the experiments outlined in this chapter, NGF was selected and tested in 

bioassays experiments.  However, the presence of NGF in the microenvironment post-

SCI has been shown to cause undesirable side effects such as autonomic dysreflexia and 

neuralgia caused by the aberrant spouting of certain neurons (Krenz et al., 1999). 

Autonomic dysreflexia is a condition characterized by an immense sympathetic discharge 

caused by noxious stimuli that results in increased blood pressure via widespread 

vasoconstriction.  Neuralgia, also known as neuropathic pain, is pain that is not a result of 

pain receptor activation.  Both of these adverse conditions are debilitating and potentially 

dangerous, with the former being a medical emergency.  In view of this, we seek to 

incorporate other factors into our matrices that may be beneficial post-SCI.  Since we 

have demonstrated that NGF can successfully be integrated into our matrices and 

delivered, other factors can be incorporated to aid in the survival and resprouting of other 

neuronal groups.  Exogenous administration of brain-derived neurotrophic factor (BDNF) 

and neurotrophin-3 (NT-3) have been found to preserve the neuroplasticity of 

corticofugal fibers and in some cases led to functional recovery post-SCI (Namiki et al., 

2000; Iarikov et al., 2007).  Additionally, insulin-like growth factor-1 (IGF-1), a 

polypeptide with sequence homology to insulin released primarily by the liver in 
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response to growth hormone that affects human cells almost ubiquitously, has been 

shown to promote the growth of projecting axons and dendrites, synaptogenesis, and 

neuroprotection (Niblock et al., 2000; Cheng et al., 2003; Ozdinler and Macklis, 2006; 

Hung et al., 2007).  Hence, these factors such as BDNF, NT-3, and IGF-1 can 

concomitantly be delivered via alginate microspheres by way of an electrospun matrix 

implant.

In other experiments outlined in this chapter, ChABC was selected to be 

incorporated into our electrospun matrices so as to neutralize the CSPGs seen after SCI. 

However, other axon growth-inhibitory molecules have also been identified.  One 

notorious group of inhibitors is found to be associated with central myelin.  Members of 

this group include Nogo-A, myelin-associated glycoprotein, and oligodendrocyte-myelin 

glycoprotein (McKerracher et al., 1994; Chen et al., 2000; Kottis et al., 2002).  All three 

have been demonstrated through in vitro and in vivo studies to cause growth cone 

collapse by their binding to the Nogo-66 receptor (Liu et al., 2002; Xie and Zheng, 2008). 

In view of this, we seek to incorporate a compound into our matrices that can overcome 

the inhibitory effects of these myelin-associated proteins.  One such compound of interest 

is bucladesine, which is a cell permeable cyclic adenosine monophosphate (cAMP) 

analog.  Also known as dibutyryl cAMP, this cyclic nucleotide has been shown to alter 

the growth state of older neurons and induce axonal growth in the presence of myelin-

associated inhibitors (Cai et al., 1999; Gao et al., 2003; Domeniconi and Filbin, 2005). 

Accordingly, bucladesine is an excellent candidate for incorporation.
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Figure 3.1.  The electrospraying apparatus is very similar to the electrospinning 
apparatus.  Key system components include a solution reservoir (syringe), nozzle (18-
gauge, blunted, metallic needle), high-voltage DC power supply, and grounded target.
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Figure 3.2.  (A) A light microscopic image of alginate microspheres showing their 
uniform diameter.  (B) A wide-field fluorescence image of the same microspheres 
showing the incorporation of a fluorescent protein.  The white arrows point to the same 
piece of debris, indicating the same field of view in both images.  Scale Bars (A and B) = 
10 μm.
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Figure 3.3.  Bioassay assessing the bioactivity of NGF-incorporated alginate 
microspheres on DRG outgrowth.  DRGs were isolated from E16 rat embryos and 
cultured in wells of a 48-well plate.  Schematics (A, C, and E) of the experimental setup 
and their corresponding results (B, D, and F) are shown.  In the absence of NGF in the 
media (A), predictably no outgrowth is seen (B).  However in a positive control setup, 
specifically in the presence of NGF in the media (C), neuritic outgrowth is evident (D). 
Microspheres were deposited in a Transwell insert and placed into wells (E).  Neuritic 
processes of DRGs exposed to NGF-incorporated alginate microspheres showed 
exuberant outgrowth as compared with the positive control (F).  Scale Bars (B, D, and F) 
= 500 μm.
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Figure 3.4.  The extent of outgrowth exhibited by the DRG cultures when exposed to 
various sources of NGF (in media or alginate microspheres) was quantified and shown 
here.  The difference in the extent of outgrowth between NGF in media and NGF 
supplied by the alginate is likely the result of the gradual increase in concentration of 
NGF in the media with time.
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Figure 3.5.  Stripe bioassay of dorsal root ganglia (green) grown between aggrecan lanes 
(red) for 7 d in culture.  Aggrecan, a CSPG, is a known inhibitor of axonal regrowth 
following SCI.  Schematics of the stripe bioassays are shown with or without 
incorporating ChABC into the matrix (A and C) and their corresponding results (B and 
D).  In the absence of ChABC, DRG neurites were inhibited from growing on aggrecan 
lanes (A and B).  In contrast, in the presence of a ChABC-incorporated matrix, the 
growth-inhibitory nature of aggrecan was neutralized.  Aggrecan lane boundaries marked 
by arrows.  Scale Bars (B and D) = 500 μm.
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Chapter 4

Preliminary Tests of Implanting Electrospun Matrices in a Rat 

Spinal Cord Transection Model

Introduction

In Chapter 2, we presented data demonstrating the successful use of 

electrospinning to generate biocompatible, implantable matrices that are able to direct 

neuritic outgrowth.  And in Chapter 3, we showed how these matrices can be enhanced to 

address the two specific therapeutic obstacles of neurotrophic support and increased 

chondroitin sulfate proteoglycan (CSPG) expression after spinal cord injuries (SCI) by 

supplementing the matrices with a growth factor and an enzyme that neutralizes the axon 

growth-inhibitory activity of CSPGs.  In view of these successes, we next sought to 

examine the extent to which these matrices perform when implanted into a rat model of 

SCI.  In this brief chapter, we present a bit of preliminary results showing some initial 

successes of this in vivo study.
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Materials and Methods

Electrospinning

Air-gap electrospinning was similarly employed in order to fabricate cylindrical 

conduits of aligned fibers as described previously in Chapter 3 and the suture material 

polydioxanone (PDS) was again used.  Briefly, for each matrix, a PDS filament was 

dissolved in the solvent HFIP at a concentration of 125 mg/ml and the solution was 

deposited in a syringe, which was mounted onto a syringe driver set to deliver 5 ml/hr. 

Though the exact placements of the various electrospinning components differed between 

runs and required a bit of trial and error for the optimal positioning of the two grounded 

posts, generally the air gap between posts was set between 3 to 5 cm and the assembly 

containing the posts was placed no more than 20 cm away from the nozzle.  To match the 

size of the thoracic cord in a rat, spinning continued until a diameter target of 2 mm was 

reached during the fabrication process.

Animal Model and Surgical Procedures

Adult Long Evans Hooded rats aged approximately 70 days were used for this 

study.  Owing to extensive experience with the rat percussive SCI model, we learned that 

the presentations of cystic cavities that formed post-injury were highly inconsistent. 

Furthermore, the extent of white matter sparing was equally variable.  Therefore, in this 

study, we elected not to use the percussive SCI model.  Though we hope that these 

electrospun matrices would in the future be used to bridge the fluid-filled cyst after 

contusion SCIs in humans, we wanted an experimental animal model that would present 
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consistent complete injuries so that our testing conditions of these electrospun matrix 

implants would be as uniform as possible from animal to animal.  Accordingly, a 

transection SCI model was selected instead.

Adult Long Evans Hooded rats aged approximately 70 d were used for the 

transection SCI protocols.  All surgical and postoperative care procedures were 

performed in accordance with the Virginia Commonwealth University Institutional 

Animal Care and Use Committee.  Animals were placed in a closed container, sedated 

with 5% isoflurane, endotracheally intubated, and maintained under 2.5% isoflurane 

during surgical procedure.  Depth of anesthesia was assessed periodically during the 

surgical procedures by tail pinch and watching for reflexive movements.  Body 

temperature was kept normothermic using a homeothermic blanket placed under the 

animal.  Employing sterile techniques, a dorsal midline incision was made over the mid-

thoracic spine and a standard thoracic level 8 (T8) laminectomy was performed on the 

animal to expose the spinal cord (Figure 4.1A).  A 2-mm segment of the cord was then 

completely removed via transection by iridectomy scissors, leaving a similarly sized gap 

(Figure 4.1B).  Thrombin-soaked foam pieces were placed in and around the created gap 

to hasten hemostasis.  After bleeding slowed (usually after about 15 to 20 min post-

transection), an electrospun PDS matrix conduit was custom-fitted into the gap and 

approximated to the cut cord stubs such that the fiber grain of the matrix ran 

longitudinally with the cord (Figure 4.1C).  The wound was closed in layers with silk 

sutures and skin incision closed with surgical staple clips.  Animals were subsequently 

allowed to recover in a separate area containing a warming blanket.  
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All animals received prophylactic gentamicin (5 mg/kg) before surgery and daily 

thereafter for 7 d.  Post-operatively, all animals were given easy access to food and water 

and housed two per cage.  Analgesic medication (acetaminophen oral suspension, 2 

mg/ml) was mixed into the drinking water and administered for the first 3 d post-injury. 

Manual bladder expression was performed three times daily for the first week after 

surgery and two times daily thereafter until spontaneous micturation was reestablished. 

Due to the severe nature of transection cord injuries, spontaneous micturation generally 

did not occur in animals until the eighth week post-surgery.

Preliminary Results

At the end of week 1 and week 6 post-surgery, animals were sacrificed and their 

spinal cord containing the electrospun implant was isolated.  Grossly, the implant was 

well integrated into the cord with excellent implant-stub adherence (Figure 4.2A).  These 

cords were cryosectioned longitudinally and the sections were labeled with the cell 

nuclear fluorescent stain DAPI (4’,6-diamidino-2-phenylindole).  At the end of week 1 

post-surgery, growing tissue has enveloped the implant and cells are seen infiltrating the 

implant from all sides (Figure 4.2B).  By week 6 post-surgery, the matrix implant is 

almost packed full of cells (Figure 4.2C).  These results demonstrate the biocompatibility 

and the capacity of the electrospun matrix conduit to facilitate cellular infiltration, an 

important step in the bridging of gaps and cysts post-SCI.  We are currently carrying out 

other histological and behavioral assessment experiments to determine the extent of 
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implant penetration by regrowing axons and recovery of motor functions.  For these 

experiments, enhanced matrices such as those described in Chapter 3 are being tested.
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Figure 4.1.  Photographs showing the matrix implantation portion of the surgical 
procedure.  (A) The spinal cord (arrow) is exposed after completing a laminectomy at the 
T8 level.  (B) A gap (arrow) remains after 2 mm of the cord is removed via transection. 
(C) Placement of a similarly sized cylinder of electrospun matrix (arrow) into the gap.
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Figure 4.2.  (A) Gross view at week 6 post-surgery of a transected cord implanted with 
an electrospun matrix conduit.  (B) A representative longitudinal cord section labeled 
with a fluorescent cell nuclear marker DAPI showing excellent integration of the matrix 
(arrows) into the cord by the end of week 1 post-surgery.  Cells are seen infiltrating the 
matrix from all sides.  (C) By week 6 post-surgery, the matrix (arrows) is almost packed 
full of cells.  Scale Bars (A) = 2 mm.  Scale Bars (B and C) = 500 µm.
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Chapter 5

Chronicling the Injury-Induced Proliferative Response at the 

Spinal Cord Injury Lesion Site and Attenuating the Response 

with X-Irradiation

Introduction

Traumatic injury to the spinal cord results in the proliferation of cells at the lesion 

site that mature into astrocytes, ultimately resulting in the formation of a gliotic scar.  The 

cells within the scar, of which the majority are astroctyes, express factors that are known 

to inhibit axonal regeneration.  In addition, as a result of the tight spatial cellular 

associations of the scar, regrowing axons are prevented from crossing the scar toward the 

opposite margin of the lesion.  Consequently, the scar presents both a biochemical and to 

a lesser extent physical barrier to axonal regeneration following spinal cord injury (SCI). 

It is believed that the attenuation of this injury-induced cell population may be helpful in 

reducing the inhibitory nature of the scar so as to allow a greater extent of regeneration 

(Moon and Fawcett, 2001; Woerly et al., 2004; Tian et al., 2006).  Furthermore, gliotic 

scar attenuation may be a necessary adjuvant treatment to the implantation of a bridging 
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scaffold since the scar represents on-ramp and off-ramp barriers to axonal regrowth onto 

and off of the bridge.  The attenuation of cellular proliferation needs not be extreme, 

since, as previously noted, the gliotic scar features a number of important beneficial 

effects, such as the isolation of damaged tissue from viable tissue and its notable role in 

providing a substrate for angiogenesis.

Accordingly, using a rat percussive cord injury model and employing 

immunohistochemical and flow cytometric methods by means of various cellular 

proliferation and glial cell markers, we first identified the injury-induced cell populations 

in and around the SCI lesion site and subsequently chronicled their initial periods of 

proliferation.  Once this information was obtained, we next sought to demonstrate the 

extent to which this proliferative response can be attenuated with methods that target 

dividing cells.  Specifically, as previously shown by this laboratory and others, cellular 

proliferation can be attenuated by appropriate levels of ionizing irradiation, a very similar 

procedure which has been applied for decades to control malignant cells in cancer 

therapy.  Irradiation therapy possesses a number of desirable characteristics in that it is 

non-invasive, reproducible, and accurate in its targeting.  The use of irradiation as an 

adjunctive therapy for SCI is not entirely novel.  A very small number of published 

studies have previously demonstrated mixed results in attenuating scar formation and 

improving motor function (Kalderon et al., 2001; Pinjuh and Bedi, 2003; Ridet et al., 

2000; Zeman et al., 2001; Zhang et al., 2005).  A reason for the inconclusiveness of these 

studies perhaps may be attributable to the irradiation dosing, which was sometimes orders 
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of magnitude apart between studies.  Furthermore, the timing and frequency of doses 

given often varied greatly between methodologies.

In view of these apparent deficiencies, a serial series of related experiments was 

completed systematically so that the best timing and dose can be determined.  As 

previously stated, a chronicling of the injury-induced proliferative response after SCI was 

first accomplished.  This was done to establish the timing component.  Before initiating 

the irradiation experiments, exhaustive dosimetry was completed with the assistance of 

the Division of Radiation Physics and Biology in the Department of Radiology.  In order 

to obtain dosing response and efficacy in neural tissue, the irradiation method was first 

tested on a model of normal cellular proliferation in neural tissue, namely the 

subventricular zone (SVZ) of neonatal rats, which contains a large number of dividing 

cells.  Later, the paradigm was further tested on an injury-induced cellular population in a 

cortical stab injury rat model before ultimately tested on a contusion SCI rat model.

Materials and Methods

Mixed Glia Isolation and Culture

Before proceeding to in vivo experimentation, the reliability of employing flow 

cytometry to count glial cells required confirmation.  In view of this, unpurified glial 

cultures were first used to test the flow cytometric methodology.  In accordance with the 

Virginia Commonwealth University Institutional Animal Care and Use Committee, glial 

cells were isolated using similar methods described previously (McCarthy and de Vellis, 

1980).  Briefly, isolated postnatal-day 3 rat cortices were minced and dissociated 
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mechanically and enzymatically.  Cells were seeded into T-75 poly-L-lysine-coated 

tissue culture flasks that contained Dulbecco’s modified Eagle medium/Ham’s F-12 

medium with 10% fetal bovine serum and 1% antibiotic-antimycotic agent, and allowed 

to proliferate until the population reached confluency.  During this time, culture media 

changes were made every 3 to 4 d.  Cultures were ready for use after splitting.

Flow Cytometry

Flow cytometric methods were carried out using similar procedures described 

previously (Bilsland et al., 2006).  Glial cultures were trypsinized, resuspended, fixed 

with 4% paraformaldehyde, and permeabilized with Cytoperm (BD Biosciences).  Cells 

were first labeled with 7-aminoactinomycin D (7-AAD) to identify cells from debris and 

subsequently labeled with fluorochrome-conjugated antibodies for the thymidine analog 

and marker of proliferating cells bromodeoxyuridine (BrdU) and for the glial markers 

vimentin and glial fibrillary acidic protein (GFAP).  Negative control antibodies were 

used to facilitate the setting of quadrant gates.

Animal Model and Surgical Procedures

Adult Long Evans Hooded rats aged approximately 70 d were used for the 

contusion SCI protocols.  All surgical and postoperative care procedures were performed 

in accordance with the Virginia Commonwealth University Institutional Animal Care and 

Use Committee.  Animals were endotracheally intubated and maintained under inhalation 

anesthesia (2.5 % isoflurane) during surgical procedure.  Depth of anesthesia was 
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assessed during surgical procedures by tail pinch and observation for reflexive 

movements.  Body temperature was kept normothermic using a homeothermic blanket. 

Employing sterile techniques, a dorsal midline incision was made over the mid-thoracic 

spine and a standard thoracic level 8 (T8) laminectomy was performed (Figure 5.1B). 

Animals were then placed in a spinal frame and the exposed spinal cord was contused 

with the Multicenter Animal Spinal Cord Injury Study (MASCIS) impactor using a 10-g 

weight dropped from a height of 25 mm (Figure 5.1A and 2.1C).  Sham animals 

underwent laminectomy but did not receive spinal cord contusions.  The reproducibility 

of the computer-driven MASCIS impactor can be assessed by examining the impact 

parameters acquired by the computer during each trial, which includes the trajectory of 

the falling rod, impact velocity, cord compression distance, and cord compression time. 

Animal injuries with unacceptable impact parameters were excluded entirely from the 

study.  The wound was closed in layers with sutures and skin incision closed with 

surgical staple clips.  Animals were subsequently allowed to recover in a separate area 

containing a warming blanket.  For the irradiation studies, the impact site location was 

noted via a single exclusive suture tied through skin and muscle layers dorsal to the 

laminectomy site.

All animals received prophylactic gentamicin (5 mg/kg) before surgery and daily 

thereafter for 7 d.  Post-operatively, all animals were given easy access to food and water 

and housed two per cage.  Analgesic medication (acetaminophen oral suspension, 2 

mg/ml) was mixed into the drinking water and administered for the first 3 d post-injury. 
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Manual bladder expression was performed three times daily for the first week after 

surgery and two times daily thereafter until spontaneous micturation was reestablished.

Chronicling the Glial Cell Proliferation at Lesion Site

To establish the time course of the injury-induced proliferative response after SCI 

and relate this to gliotic scar formation, animals were first divided into two groups of 

sham and injured.  Subsequently, they were subdivided further (n = 3) as to the day post-

injury (day 1, 2, 3, 4, 7, 10, and 14) an animal would receive two doses, 12 h apart, of 

BrdU (300 mg/kg body weight).  On day 14 post-injury, animals were sacrificed with a 

lethal dose of pentobarbital and transcardially perfused with phosphate buffered saline 

(PBS).  The 5-mm spinal cord segment containing the SCI lesion epicenter was harvested 

and the tissue was mechanically dissociated by passage though a 70-µm filter.  The 

resulting cell suspension was washed with PBS and the unwanted erythrocytes were lysed 

with tris-buffered ammonium chloride.  The cells were then prepared as described 

previously for flow cytometric analysis.

X-Irradiation

To assess the extent to which X-irradiation can attenuate the normal proliferative 

response in neural tissue, the SVZ of neonatal rats, which is an area in the brain 

containing large numbers of dividing cells, was unilaterally irradiated via a Faxitron 

43855D X-ray irradiator with varying single doses (5, 10, 15, and 20 Gy).  (Irradiator 

dosimetry was completed with film before experiments proceeded.)  When it was 
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determined that 15 Gy was the lowest dose that can attenuate 80% of the proliferative 

response (data not shown) as compared to the SVZ of the control hemisphere, the use of 

irradiation was further explored in injury-induced cellular proliferation model, 

specifically in a cortical stab injury in rats.

After determining the peak period of proliferation via the chronicling experiment 

described above, another group of SCI animals (n = 3) received a single dose of 

irradiation administered on day 2 post-injury.  To prepare the animal for the irradiation 

procedure, the rat was first anesthetized with a mild dose of ketamine/xylazine cocktail 

and placed in a small box.  The dorsum of the animal was raised with a paper towel roll 

placed beneath its upper abdomen.  To protect the other tissues for irradiation damage, a 

2-mm thick solid lead plate containing a square opening of 2.5 cm by 2.5 cm was placed 

over the animal, with the center of the opening aligned with the laminectomy site as 

noted by an exclusive suture that was tied during the wound closure after surgery.  The 

box containing the animal was then placed into the irradiator and a dose of 15 Gy as 

determined by the duration of exposure (about 14 min) administered.  After the exposure, 

the animal was allowed to recover.

Results

Though the ultimate goal is to examine the approach of using X-irradiation to 

reduce gliotic scar formation after SCI, a series of experiment was planned to determine 

the appropriate dose and timing of the therapy.  In order to establish the appropriate dose 

of the irradiation, various doses were first tested on a model of normal cellular 
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proliferation in neural tissue.  Based on previous experience of the procedure in our 

laboratory (McGinn et al., 2008), four different doses of irradiation (5, 10, 15, and 20 Gy) 

were tested on the SVZ of neonatal rats, which contains a large number of dividing cells. 

It was found that 15 Gy sufficiently attenuated the proliferative response by 80% (data 

not shown).  Subsequently, the use of irradiation was further tested on an injury-induced 

cellular proliferation model, specifically a cortical stab injury in rats.  In this experiment, 

rats were given a needle stab injury to the cortex, inducing the cells in the vicinity to 

proliferate (Figure 5.2A).  In contrast, rats that were then irradiated at the site of injury 

when cells began to proliferate at day 2 post-injury showed the presence of only few 

dividing cells (Figure 5.2B).

Now that the dosing of irradiation was established, we wished to explore when 

such a dose should be given to maximize its effect.  In the next series of experiments, we 

sought to establish the time course of the injury-induced proliferative response in SCI and 

relate this to gliotic scar formation with the use of flow cytometry.  In order to ascertain 

the validity of using flow cytometry to count cells of the central nervous system (CNS), a 

preliminary study using mixed glial cultures was first completed (Figure 5.3).  When it 

was found that flow cytometry can reliably count vimentin+ and GFAP+ cells, the 

chronicling of the injury-induced proliferative response with in vivo experiments 

proceeded (Figure 5.4).  For reactive astrocytes, which are labeled with vimentin, the 

peak period of proliferation lasts from day 2 to 5 post-injury (Figure 5.4G).  We then 

found that a single targeted 15-Gy exposure of irradiation to the lesion site at day 2 post-

injury reduced the proliferating cell population by over 50 % (Figure 5.4H).
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Discussion

We hypothesized that irradiation treatment, when targeted to the site of spinal 

cord trauma, may reduce the injury-induced proliferative cell population.  As this 

population contributes significantly to the formation of the gliotic scar, the reduction of 

this cell population would reduce scar formation and create a more favorable 

environment for axonal regeneration.  However, since the gliotic scar contributes a 

number of important benefits, we merely want to “punch a few holes” such that 

regrowing axons can penetrate the physical barrier aspect of the scar while scar integrity 

can be preserved to prevent the spread of cellular destruction.  To optimize the process, 

we completed several preliminary experiments in order to determine the lowest dose that 

can be used to maximally attenuate the injury-induced proliferative response as well as 

the best timeframe for administration.

In this study, though we showed how irradiation can attenuate the injury-induced 

proliferative response post-SCI, we never proceeded to determine the extent to which 

irradiation can improve functional outcome.  In the past several years, there has been 

increasingly strong evidence that the reactive astrogliotic process and subsequent gliotic 

scarring play an imperative role in neuroprotection during the early acute phase of injury. 

As discussed previously, it has been known for some time that the scar possesses a 

beneficial role, especially in the establishment of a new glia limitans around the lesion. 

However, mounting evidence as to the scar being inhibitory to regeneration has led to the 

common general perception that it is something that should aggressively be removed or at 

least reduced in size even though earlier evidence has shown scar ablation to drastically 
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increase lesion volume and promote neuronal and oligodendrocyte cell death (Bush et al., 

1999; Fauklner et al., 2004).  In view of the many recent studies that show how the gliotic 

scar goes beyond just isolating the lesion post-injury, specifically the roles of sealing the 

blood-brain barrier, preventing overwhelming inflammatory infiltration, supplying 

various growth factors, and even promoting axonal sprouting (Okada et al., 2006; 

Renault-Mihara et al. 2008; Rolls et al., 2009), the overall perception of the scar being 

unfavorable post-SCI is slowly changing.

Though it is still true that the scar represents a barrier to regeneration, both 

physically and biochemically, this recent paradigm shift of regarding gliotic scar 

formation as almost necessary during the immediate and acute phases of injury leads us 

to reconsider the advantages of attenuating the injury-induced cellular proliferation so 

early on post-SCI.  However, once the SCI lesion is stabilized and the process of gliosis 

occurred to such an extent that the scar causes more harm than benefits, we believe the 

continuing injury-induced proliferation, despite having peaked earlier, can still be 

attenuated by way of irradiation to facilitate a more efficient penetration of regrowing 

axons into and beyond the gliotic scar.
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Figure 5.1.  (A) The MASCIS Impactor, developed in 1991 by Drs. John Gruner, Carl 
Mason, and Wise Young, is a device used to deliver reproducible spinal cord contusions 
in rats.  A 10-g rod can be dropped onto an exposed rodent spinal cord from a distance of 
12.5, 25, or 50 mm, which equate approximately to a mild, moderate, or severe contusion 
SCI respectively.  (B) The white spinal cord is exposed after completing a laminectomy 
at the vertebral level T8.  (C) The spinal frame holds the animal via two spinous 
processes adjacent to the laminectomy so that the exposed segment of the cord is aligned 
directly beneath the rod.
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Figure 5.2.  A single dose of irradiation can drastically reduce the number of 
proliferating cells in the injured cortex.  (A) Sections immunolabeled with BrdU (green) 
and GFAP (red) showing the injury-induced proliferative response 4 d following a 
cortical stab wound (arrow).  (B) The reduction of this response as a result of a single 
dose of irradiation directed locally at the wound site 2 d post-injury.
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Figure 5.3.  Flow cytometry can reliably count vimentin+ and GFAP+ cells.  Unpurified 
glial cultures were trypsinized, resuspended, fixed, and permeabilized.  Cells were first 
labeled with 7-AAD to identify cells from debris (A) and subsequently labeled with 
fluorochrome-conjugated antibodies for BrdU, vimentin, and GFAP.  Negative control 
antibodies were used to facilitate the setting of quadrant gates for the BrdU-vimentin 
analysis (B) and BrdU-GFAP analysis (C).  Flow cytometric counts (F and G) were 
comparable to that of actual counts done on immunolabeled cultures (D and E).  A 
similar study was also completed using glioblastoma cells and cell counts using all three 
markers were equally comparable between flow cytometric and manual 
immunocytochemical counts (Data not shown).
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Figure 5.4.  Spinal cords of rats were percussively injured by a 10-g weight drop from 25 
mm.  To obtain the flow cytometric dataset displayed here, on day 4 post-injury, animals 
were given two doses of BrdU.  On day 14 post-injury, the 5-mm spinal cord segments 
containing the lesion epicenter from three experimental groups of rat (sham, injured, and 
injured with irradiation) were mechanically dissociated into a cell suspension, fixed, and 
permeabilized.  Cells were first labeled with 7-AAD to identify cells from debris (A) and 
subsequently labeled with fluorochrome-conjugated antibodies for BrdU and vimentin. 
To facilitate the setting of quadrant gates for the analysis, cells from the spinal cord of a 
non-BrdU treated sham animal were used (B).  In sham animals, very little proliferation 
was seen as shown by BrdU immunohistochemistry (C) and as indicated by low flow 
cytometric counts of BrdU+ events in the top two quadrants (1.0% + 2.1%) (E).  In 
contrast, in injured animals, there is a massive increase of cell proliferation as shown by 
BrdU immunohistochemistry (D) and flow cytometry (4.6% + 19.0%) (F).  Moreover, a 
large number of these proliferating cells are vimentin+ (19.0%).  The above described 
process was repeated with BrdU being administered at different time points and a graph 
depicting the chronicling of the proliferative response of vimentin- and GFAP+ cells was 
generated (G).  A single dose of irradiation administered at the beginning of the peak 
period of proliferation (day 2 post-injury) was able to attenuate the injury-induced 
proliferative response as indicated by flow cytometry (H).  Scale Bar (C) = 1 mm.
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Chapter 6

Concluding Statement

Traumatic spinal cord injury (SCI) is a debilitating, costly, and emotionally 

devastating condition that is characterized by marked neuropathology and limited 

recovery of function.  While the initial insult rapidly disrupts neural tracts and kills cells, 

an insidious, complex secondary cascade of cellular and biochemical events soon 

follows.  Glial cells such as astrocytes react to the injury by proliferating and 

hypertrophying, which results in the development of a gliotic scar that partitions the 

lesion epicenter from viable tissue.  Although this process aids to prevent the spread of 

uncontrolled tissue damage, the scar nevertheless acts as a physical barrier to axonal 

regeneration.  Furthermore, the scar and the cells within are a major source of axon 

growth-inhibitory molecules such as chondroitin sulfate proteoglycans (CSPG) and thus 

concomitantly acts as a biochemical barrier.  Concurrently, inflammatory cells infiltrate 

the cord parenchyma and through immunologic activation, possess the capacity to 

exacerbate damage by propelling viable cells into apoptosis.  Additionally, the severing 

of axons results in the interference of neurotrophic support, making neuronal survival 

precarious.  Finally, the pathology culminates in the formation of a fluid-filled cyst, 
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which puts in place yet another insuperable hurdle for regrowing axons to overcome. 

Collectively, these pathological processes perhaps partially explain the lack of effective 

central nervous system (CNS) recovery seen following SCI.

Up until the recent decades, there was little hope for the successful treatment of 

SCI.  But despite our incomplete understanding of the mechanisms that control these 

pathological processes, we now know that they are amenable to therapeutic interventions 

that may promote neuroplasticity and the regeneration of axons, leading to improved 

functional outcomes.  Moreover, it has been demonstrated numerous times that adult 

CNS neurons retains the ability of regrowing functional axons (Richardson et al., 1980; 

von Meyenburg et al., 1998; Chuckowree et al., 2004).  In view of this, when provided 

with a permissive microenvironment, the notion of severed axons regenerating is indeed a 

very valid possibility.

In this dissertation, we introduced a few of our own strategies to overcome the 

aforementioned therapeutic challenges post-SCI.  We employed electrospinning to 

generate a biocompatible matrix implant that can bridge and direct axonal elongation 

across the fluid-filled cyst.  Given the complex array and scope of pathological sequelae 

post-SCI, it is generally recognized that successful treatment requires a multifaceted 

approach.  In view of this, we presented novel approaches by which successful tried and 

true therapeutic strategies are combined.  To facilitate the delayed but necessary long-

term release of an enzyme capable of neutralizing the axon growth-inhibitory activity of 

CSPGs, chondroitinase ABC was incorporated directly into our electrospun matrices and 

tested.  And to ensure an immediate replacement source of neurotrophic support during 
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the acute phase of the injury, we tested the use of an alginate microsphere vehicle that 

can also be incorporated into our electrospun matrices to deliver growth factors and other 

potential neuroprotective and growth-promoting agents.  To address the injury-induced 

proliferative response, which represents an on-ramp off-ramp obstacle that prevents 

axonal regeneration onto our matrix implant, we showed how X-irradiation can moderate 

the the injury-induced proliferative glial response so as to facilitate a more efficient 

penetration of regrowing axons into and beyond the gliotic scar.  And finally, FTY720 

was utilized as a pharmacologic intervention to prevent lymphocytic egress from 

lymphoid tissues and reducing the infiltration of lymphocytes into the cord parenchyma 

post-SCI, which resulted in improved hindlimb motor recovery.

Although many of the ideas presented have been assessed in animal studies and 

these experiments have produced results that demonstrated potential and optimism, these 

strategies may not translate easily into human SCIs without additional effort.  As 

mentioned previously, the presentation of cysts formed post-SCI is highly variable in 

both its time of emergence and spatial dimensions.  While the timeframes of the many 

cellular and molecular events have been chronicled in the rodent models of SCI, 

researchers have only a rudimentary understanding of such details in human cases of 

SCIs due to the sparse availability of study specimens.  A determination of the 

appropriate time to implant our or any other experimental scaffold bridges post-SCI in 

humans will be required to optimize regeneration.  Additionally, while cavities formed 

post-injury in human SCIs are inherently larger than those of rat SCIs, fitting, aligning, 

and implanting our bridging matrices into these narrow cysts may not be trivial. 
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Although extreme, some have suggested transecting and removing the damaged cord 

segment in contusion SCI patients that have absolute complete cord injuries and replacing 

the segment with a bridge in a process similar to our animal trials.  There is some merit 

with this radical procedure since much of the inhibition and barrier effects are removed 

instantly.  Additionally, a laceration of the cord, such as this method, has been shown to 

produce little gliotic scarring, which would enable the cord stubs to act as a more 

permissive on-ramp off-ramp zone after bridge implantation.  Naturally, this approach 

would not be a therapeutic solution for incomplete SCI patients with cords that have 

some level of white matter sparing.

Another notion of interest is the use of our electrospun matrix implants during the 

chronic phase of human SCI, which generally begins six months to a year after the initial 

traumatic insult.  Although research targeting the chronic phase of the injury is sorely 

lacking, what is known is rather discouraging.  In a longstanding injury, the diminished 

regenerative capacity of the neurons and the increasing rigid scar barriers at and beyond 

the lesion site make functional recovery even more of a challenge.  Potential therapies 

that have shown promise when applied acutely, have almost all shown to fail when 

employed to injuries older than four weeks in animal models of SCI (Houle and Tessler, 

2003).  At this point with our current understanding, it is most likely that the best 

therapeutic time window will reside during the early stages of the injury’s pathological 

progression.

Table 6.1 displays a general but almost exhaustive list of therapeutic obstacles 

arranged by the timeframes in which they occur after traumatic SCI.  Each of these 
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phases presents a number of known therapeutic aims.  A combination of treatments that 

target in a serial fashion the listed objectives during the appropriate timeframe would 

probably give SCI patients the best chance at regenerating axotomized neurons and 

recovering lost physiological functions.  Despite this well-recognized point of view, very 

few combinatory strategies have been documented in the literature.  This is not surprising 

given the difficulty of the problem and the enormous amount of resources required to 

carry out experiments based on a combinatory approach.  Nevertheless, in the short span 

of four years, we came up with a few novel ideas, tested them experimentally, and have 

started to combine some of these potential treatment strategies.  As discussed in Chapter 

5, we have now obtained some promising preliminary results from our matrix implant 

trials in animals.  Though more in vivo runs are required to show conclusively that our 

electrospun matrix is able to bring about functional improvements post-SCI, we plan to 

combine our other treatment approaches as well as other outside strategies that have been 

proven to be successful.

Collectively, the ideas presented in this manuscript and the results from 

experimentally testing these ideas represent a new body of knowledge that, if perhaps 

only incrementally, advance the pathological understanding as well as the treatment of 

traumatic SCI.
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SCI phases, timeframe of phases, key events, and therapeutic aims within each phase

Phases Immediate Phase Acute Phase Subacute Phase Intermediate Phase Chronic Phase

Approximate 
Timeframe
in
Human
Injuries

Immediately to Hours
after injury

Hours to days
after injury

Days to weeks
after injury

Weeks to months
after injury

Months to years
after injury

Events 
and
Potential 
Therapeutic 
Obstacles

 Primary 
mechanical 
insult

 Severing 
of axons

 Hyperemia
 Blood 

vessel damage 
and hemorrhage

 Microglial 
activation

 Edema
 Ischemia 

and hypoxia
 Hemorrha

gic necrosis
 Excitotoxi

city
 Blood-

spinal cord 
barrier 
degradation

 Demyelina
tion

 Inflammat
ory infiltration

 Reactive 
astrogliosis

 Gliotic 
scarring

 Cyst 
formation

 Wallerian 
degeneration

Major
Therapeutic
Goals
Within
Phase

 Neuroprot
ection and 
promotion of 
neuronal 
survival

 Immune 
modulation

 Modulatio
n of injury-
induced 
proliferation

 Promotion 
of regeneration

 Remyelina
tion

 Neutralizat
ion of myelin 
debris and 
proteins

 Neutralizat
ion of 
proteoglycans

 Cyst 
bridging

 Physical 
Rehabilitation
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Table 6.1.  The aftermath of SCI is divided into five phases: the immediate phase, acute 
phase, subacute phase, intermediate phase, and chronic phase.
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Appendix

FTY720 Reduces Inflammation and Promotes Functional 

Recovery after Spinal Cord Injury

Introduction

The pathophysiology of spinal cord injury (SCI) has classically been partitioned 

into primary and secondary injury processes.  As described previously, after the initial 

primary injury, secondary injury encompasses an insidious cascade of cellular and 

biochemical events, the magnitude of which is rivaled only by its complexity.  Within 

this milieu of events, inflammation has been identified as an important component of 

secondary injury and numerous cell populations have been implicated as mediators of 

inflammation.  Among these cells, lymphocytes have generated interest for their key 

involvement in the concept of trauma induced autoimmunity (Popovich et al., 1996; 

Gonzalez et al., 2003; Ankeny et al., 2006).  This concept is based on the hypothesis that 

traumatic injury results in the release of neural self-antigens and subsequent immunologic 

activation.   In support of this possibility, injection into naïve animals of T cells isolated 
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from rats subjected to SCI resulted in central nervous system (CNS) tissue injury and 

neurological deficit (Popovich et al., 1996).

Many of these studies in SCI and autoimmunity have drawn on parallels from our 

current knowledge of multiple sclerosis (MS) and the animal model experimental 

autoimmune encephalomyelitis (EAE).  In both of these processes, T cells are known to 

infiltrate the CNS, resulting in demyelination and neurologic dysfunction.  Targeted 

therapies for MS have therefore focused on immunomodulation, specifically in the T cell 

population.

Fingolimod administration is one of the newest immunomodulatory therapies for 

MS and is currently undergoing phase III clinical trials as a monotherapy.  Fingolimod, 

commonly known as FTY720, is a chemical derivative of the fungal metabolite myriocin 

and in its phosphorylated form, acts as a spingosine-1-phosphate (S1P) mimetic and 

agonist of the S1P receptor (Brinkmann et al., 2002).  Several groups have shown that 

administration of FTY720 results in a significant reduction in peripheral lymphocyte 

counts (Chiba et al., 1998; Brinkmann et al., 2000; Pinschewer et al., 2000).  It has been 

postulated that FTY720 induces this lymphopenia by preventing lymphocyte egress from 

peripheral lymphoid organs.  Once FTY720 binds to the S1P receptor, internalization and 

subsequent degradation of the receptor occurs (Matloubian et al., 2004).  This 

degradation thereby eliminates the necessary S1P signal for lymphocyte egress and 

prevents recirculation into the CNS (Brinkmann et al., 2002; Mandala et. al., 2002; 

Matloubian et al., 2004).
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Independent of this ability to prevent lymphocyte migration, FTY720 has also 

been shown to have other cytoprotective capabilities.  Studies have shown that FTY720 

can prevent apoptosis in neural cells and act on endothelial cells to preserve vascular 

integrity (Fujino et al., 2003; Brinkmann et al., 2004; Coelho et al., 2007).  The exact 

mechanisms of these effects are still under investigation.

In the series of experiments presented in this chapter, we examined the efficacy of 

FTY720 in a moderate to severe contusion model of SCI.  We hypothesized that 

administration of FTY720 would reduce infiltration of T cells to the spinal cord lesion 

site and enhance functional recovery after SCI.  Our results indeed demonstrate the 

efficacy of FTY720 in a model of CNS trauma and show that administration enhances 

tissue preservation and functional outcome after SCI.

Materials and Methods

Animal Model and Surgical Procedures

Adult Long Evans Hooded rats aged approximately 70 days were used for the 

contusion SCI protocols.  The surgical procedure employed in this study was identical to 

that used in the previously discussed study of Chapter 5 and details of the method can be 

found in that chapter.

Immediately after injury, animals were randomized to receive an intraperitoneal 

injection of FTY720 (1 mg/kg body weight) (Cayman Chemical, Ann Arbor, MI) 

solubilized in 0.1% dimethyl sulfoxide (DMSO), vehicle (0.1% DMSO), or no injection 
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(injury only).  Animals were then allowed to recover in a separate area with a warming 

blanket.

All animals received prophylactic gentamicin (5 mg/kg body weight) before 

surgery and daily thereafter for 7 d.  Manual bladder expression was performed three 

times daily for the first week after surgery and two times daily thereafter until 

spontaneous micturation was reestablished.  Urine volumes were recorded at each 

collection and spontaneous micturation was defined as established when daily volumes 

collected were less than 2 ml total for 3 consecutive days.  Expressed urine was also 

monitored for evidence of urinary tract infection (UTI) by the presence of elevated urine 

pH or leukocytes and treated with a 5-d course of gentamicin if diagnosed.

Flow Cytometry

For flow cytometry, injured animals received daily intraperitoneal injections of 

either FTY720 (n = 5) or vehicle (n = 5) until sacrificed.  On the first, fourth, and seventh 

days post-injury, animals were sacrificed with a lethal dose of pentobarbital and perfused 

transcardially with phosphate buffered saline (PBS).  A 1-cm section of the cord centered 

to the impact site as well as the spleen was then harvested.  Both the cord and spleen 

tissue were individually dissociated by passage through a 70-µm filter and washed twice 

with PBS.  Erythrocytes were lysed with tris-buffered ammonium chloride.  Leukocytes 

were identified as round, phase-bright entities with a diameter of approximately 10 µm 

that excluded trypan blue and were enumerated on a hemocytometer.  Antibodies used for 

phenotypic analysis were anti-CD3, -CD4, -CD8α, -CD11b, and -His48 and were 

120



www.manaraa.com

biotinylated or conjugated to R-phycoerythrin or fluorescein isothiocyanate (BD 

Biosciences).  Streptavidin conjugated to allophycocyanin was used for the detection of 

biotinylated antibodies.  Approximately 1 × 106 cells were stained with 0.5 µg of each 

monoclonal antibody as previously described (Graf et al., 2001).  Cells were then fixed 

with Cytofix (BD Biosciences), permeablized with Cytoperm (BD Biosciences), washed 

with PBS, and stained with the DNA-specific dye 7-aminoactinomycin (7-AAD) at a 

concentration of 10 µg/ml.  Three-color fluorometric analysis was performed using a 

FACSCanto flow cytometer (BD Biosciences).  Cells were identified as 7-AAD+ events 

on a FL3 verses side scatter histogram as described by Lipton et al. (2005) and 10,000 7-

AAD+ events were analyzed.  T cell subsets were identified as CD3+/CD4+ or 

CD3+/CD8+ double-positive cells.  Monocytes and granulocytes were identified as 

CD11b+ and His48+ cells, respectively.

Behavioral Outcome Assessment

All animals were gentled in an open field twice a day for 7 consecutive days prior 

to injury.  Animals randomized to the treated group (n = 11) received daily 

intraperitoneal injections of FTY720 for 4 weeks.  Vehicle group animals (n = 10) 

received daily intraperitoneal injections of 0.1% DMSO for the same time period.  The 

injury only group (n = 9) received no injections.  Laminectomies were performed on 

sham animals (n = 2) but no cord injuries were performed and no injections administered. 

At day 2 and 7 post-injury and once weekly thereafter for a total of 6 weeks, rats were 

placed in the open field and observed for 4 min (Figure A.1A).  Two researchers blinded 
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to treatment groups observed the animals in open field testing.  Gross locomotor recovery 

after SCI was assessed using the Basso-Beattie-Bresnahan (BBB) locomotor rating scale 

as shown in Table 3.1 (Basso et al., 1995).  Observations for each hind limb were scored 

and averaged to provide a single score for each animal per session.  All data were 

collected within the 4 min period.  Once a plateau in locomotor recovery was evident 

(generally after day 28 post-injury), a frequency analysis of plantar stepping and 

coordination was performed across all groups.

All animals were also tested on the inclined plane task (Figure A.1B).  This task 

evaluates the animal’s ability to maintain a horizontal body position on an inclined board. 

The angle of the board is incrementally raised until the animal is no longer able to 

maintain the horizontal position.  Performance on the inclined plane correlates with the 

integrity of the rubrospinal tract (as well as other non-pyramidal pathways) after SCI. 

During testing, animals were placed in the right and left side up positions.  The maximum 

angle at which the animal was able to maintain position on the board for 10 s was 

recorded for each side.  Data were recorded as the average of the two sides to obtain a 

single score for each animal per session.

Analysis of Myelin Sparing

At week 6 post-injury, animals were sacrificed with a lethal dose of pentobarbital 

and perfused transcardially with PBS followed by 4% paraformaldehyde.  Spinal cords 

were harvested and postfixed for 2 h in the same fixative before being immersed in PBS 

overnight.  The fixed cords were then cryoprotected in 30% sucrose for 48 h.  FTY720-
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treated (n = 9) and vehicle (n = 8) cords were blocked and embedded together in optimal 

cutting temperature compound and sectioned at a thickness of 20 μm.  A complete series 

of axial sections spanning the injury site was collected and stained with eriochrome 

cyanine (EC) to assess for myelin sparing.  Also, axial sections peripheral to the injury 

epicenter were collected at 0.5-mm intervals and stained with EC.  For each spinal cord, 

the lesion epicenter was qualitatively defined by a blinded researcher as the section 

containing the least amount of intact tissue.  This section and sections located 100 μm 

rostral and caudal were chosen to quantify the area of spared myelin at the epicenter. 

Light microscopy at 25 × magnification was used to visualize the sections and images 

were captured with an Olympus DP12 camera.  These images were then imported into 

ImageJ, an open architecture image processing program developed at the National 

Institutes of Health, and white matter sparing analysis was performed by a blinded 

observer.  Percent myelin spared was calculated by manually outlining the spared white 

matter regions which then generated an area as denoted by the number of pixels.  This 

area was then divided by the total cross-sectional area of the axial section.  The average 

of the three sections was used to denote the percent myelin spared at the injury epicenter. 

In the same fashion as described above, sections rostral and caudal to the epicenter at 0.5-

mm intervals were analyzed for white matter sparing.

Statistical Analysis

The data presented here in this chapter is reported as means ± standard error of 

the mean.  All statistical analyses were performed using the statistical software package 
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SPSS.  Open field, inclined plane, and urine volumes data were analyzed by repeated 

measures two-way analysis of variance (ANOVA) with post hoc pairwise comparison 

test.  Days to spontaneous voiding data was analyzed by one-way ANOVA with post hoc 

Tukey analysis.  The Fisher’s exact test was used for hematuria incidence and locomotor 

frequency analysis.  Flow cytometry and myelin sparing analysis data were compared 

using Student’s t-test.  Differences with a p value less than 0.05 were considered 

statistically significant.

Results

FTY720 reduces T cell infiltration to the spinal cord lesion site after injury.

FTY720 is known to be a potent immunomodulator and numerous reports have 

shown that administration reduces peripheral lymphocyte circulation (Chiba et al., 1998; 

Brinkmann et al., 2000; Pinschewer et al., 2000).  In order to establish the efficacy of 

FTY720 treatment in a model of SCI, we quantified inflammatory cell infiltration into 

injured spinal cord using flow cytometry.  Data from this analysis showed that FTY720 

administration significantly reduced the infiltration of CD4+ T helper cells to the spinal 

cord lesion site as compared to vehicle administration at day 4 post-injury (7.56 ± 0.25 

vs. 3.80 ± 0.5, p < 0.001) (Figure A.2D).  This response was similar to the reduction seen 

in the CD8+ cytotoxic T cell population (7.80 ± 1.01 vs. 3.68 ± 1.31, p = 0.008).  At day 

7 post-injury, a similar reduction was seen in the CD4+ T helper cells (10.01 ± 1.40 vs. 

6.40 ± 0.72, p = 0.048) and in the CD8+ cytotoxic T cell population (8.51 ± 0.51 vs. 6.01 

± 0.40, p = 0.009).  However, there was no difference noted in either cell population at 
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day 1 post-injury.  For all time points, no statistical difference was noted between vehicle 

and FTY720 administration in the spleen tissue.

In order to evaluate for other inflammatory cell populations infiltrating the spinal 

cord after injury, antibody labeling for His48 (granulocytes) and CD11b (monocytes) was 

performed (data not shown).  A slight trend towards reduction was observed with 

FTY720 administration in the His48+ (24 ± 2.4 vs. 20.2 ± 1.9, p = 0.29) and the CD11b+ 

cell populations (40.3 ± 1.47 vs. 32.8 ± 7.5, p = 0.38).  However neither of these 

differences was statistically significant, suggesting that FTY720 specifically inhibits T 

cell infiltration.

FTY720 promotes hind limb recovery after spinal cord injury.

Once we established the efficacy of FTY720 in a model of SCI, our next step was 

to determine the extent to which administration would impact functional recovery.  Hind 

limb function was therefore evaluated for 6 weeks after injury using the open field and 

inclined plane tests.  During the acute and intermediate recovery stages, no differences in 

BBB locomotor scores were noted among groups (Figure A.3A).  However, by day 21 

post-injury the mean BBB score in the FTY720-treated animals surpassed those of the 

vehicle animals by 1.4 (11.5 vs. 10.1, p = 0.02).  Moreover, this difference was sustained 

throughout the remainder of the analysis even after drug treatment was discontinued at 

day 28 post-injury.  By the end of the analysis, the mean difference between treated and 

vehicle groups was 1.5 (12.5 vs. 11.0, p = 0.001).  No differences were noted between 

vehicle and injury only groups at any time point.
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A frequency analysis of the open field data is shown in Table 3.2 and reflects 

differences in locomotor milestones between the groups once recovery reached a plateau. 

For each time point analyzed, a significantly greater proportion of animals were 

consistently plantar stepping (BBB ≥ 11) or stepping with occasional coordination (BBB 

≥ 12) in the FTY720-treated group as compared to vehicle and injury only groups.  By 

day 42 post-injury, all animals in the FTY720-treated group were consistently plantar 

stepping and 81.8% exhibited at least occasional coordination.  In contrast, only 80% of 

animals in the vehicle group exhibited consistent plantar stepping and only 20% were at 

least occasionally coordinated.

Performance on the inclined plane mirrored open field testing performance with 

the exception that differences were noted at earlier times along the study (Figure A.3B). 

By day 14 post-injury, the mean difference between treated and vehicle groups was 6.5° 

(35.5 vs. 29, p < 0.0001).  Average angles were consistently higher in the treated group 

for the duration of the study and at day 42 post-injury the mean difference between 

treated and vehicle groups was 8.6° (43.9 vs. 35.3, p < 0.0001)  

For both the open field and inclined plane tests, no significant difference in scores 

was detectable at any time point between vehicle and injury only control groups.  Linear 

regression analysis revealed a very strong correlation (r = 0.87) between the BBB and 

inclined plane scores for all time points (Figure A.3C).
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FTY720 improves bladder function after spinal cord injury.

A well-known consequence of SCI in both animals and humans is bladder 

dysfunction.  Using an animal model of SCI, Wrathall et al. (2006) showed that injury 

severity could be directly correlated with degree of bladder dysfunction, which was 

reflected in the volume of urine collected during manual expression.  We therefore sought 

to utilize bladder function as another measure of functional recovery.  Figure A.4A shows 

that all animals had impaired bladder function immediately after SCI.  However, animals 

in the treated group had significantly lower mean urine volumes expressed as compared 

to vehicle and injury only groups (n = 10 for each group, p < 0.0001).  Post hoc analysis 

also revealed no statistical difference between vehicle and injury only groups in terms of 

daily urine volumes collected.

For all animals, daily bladder expressions were performed until total daily volume 

collected was less than 2 ml for 3 consecutive days, indicating return of spontaneous 

bladder function.  Inter-group comparison of the number of days required to reach this 

milestone revealed that animals in the treated group required fewer days as compared to 

vehicle and injury only groups (Figure A.4B) (6.2 ± 0.4 vs. 10.3 ± 0.6 and 9.8 ± 0.74, p < 

0.0001).  No statistical difference was noted between vehicle and injury only groups.

For each urine collection, urine color was recorded.  Retrospective analysis of the 

incidence of gross hematuria revealed that FTY720 treatment significantly reduced the 

incidence of gross hematuria as compared to vehicle and injury only groups (Figure 

A.4C) (45.5% vs. 90% and 100%, p = 0.002).  No difference was noted when comparing 

vehicle and injury only groups with each other.
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FTY720 and Body Weight

One important aspect of assessing the utility of an immunosuppressant drug is 

determining whether the drug has an unacceptable level of toxicity.  Many 

immunomodulators, although useful in their ability to reduce inflammation, are limited 

by their toxicity profile.  Animal body weight was used as an indicator of general toxicity 

and monitored throughout the course of the study.  Decreases in body weight can indicate 

failure to thrive which would then imply drug toxicity.  However, no significant 

differences in percent change in body weight were noted among the three treatment 

groups studied (Figure A.5).

Locomotor recovery correlates with myelin sparing.

In order to correlate locomotor recovery results with histological findings, we 

performed myelin sparing analysis of the lesion epicenter.  Animals were sacrificed at the 

end of the final open field testing and spinal cords were harvested for EC staining.  Due 

to the lack of differences detected in behavioral outcome between the vehicle and injury 

only groups, we confined our analysis to the treated (n = 9) and vehicle groups (n = 8) for 

comparison.  The data showed that FTY720 treatment resulted in a significant increase in 

the percentage of myelin spared (Figure A.6C) (28.5 ±1.6 vs. 20.8 ± 1.7, p = 0.004).  By 

linear regression analysis, final BBB scores also had a very strong correlation with 

percentage of myelin spared at the epicenter (Figure A.6D, r = 0.75).
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Discussion

The data presented in this study demonstrate that FTY720 administered after SCI 

dramatically reduces T cell infiltration into the spinal cord.  Furthermore, the results of 

behavioral outcome analyses revealed that treatment with FTY720 was effective in 

enhancing hind limb and bladder recovery.  Interestingly, the effect of FTY720 on hind 

limb function was evident during the chronic phase of recovery in contrast to its effect on 

bladder function which was noted during the acute recovery phase.  Results from 

morphometric analysis also provided support for the neuroprotective capacity of FTY720 

and revealed that white matter preservation is enhanced with treatment.

Our initial step in establishing the efficacy of FTY720 in SCI was to determine 

whether treatment would affect lymphocyte infiltration into the spinal cord after injury. 

Analysis by flow cytometry revealed that treatment with FTY720 after SCI significantly 

reduced T cell infiltration into the spinal cord whereas granulocyte and monocyte 

populations were relatively unaltered.  These data are in agreement with previously 

reported studies that showed that FTY720 had differential effects on CD4+ and CD8+ T 

cells and minimal effects on peripheral blood counts of granulocytes and monocytes 

(Quesniaux et al., 1999; Budde et al., 2003; Kahan et al., 2003; Bohler et al., 2004).  The 

degree of lymphocyte reduction has been shown to be dose-dependent but previously 

reported reduction ranges of 30 to 70% (Quesniaux et al., 1999; Bohler et al., 2004) are in 

good agreement with the data reported in this study of 50 to 59%.

Our flow cytometry results clearly demonstrated the efficacy of FTY720 as an 

immunomodulator in post-SCI inflammatory response.  However, the question remained 

129



www.manaraa.com

as to whether this would have a beneficial or detrimental effect on functional recovery. 

Although inflammation is a well-established sequela of CNS trauma, its role in recovery 

has been somewhat controversial.  Both beneficial and detrimental effects have been 

associated with the inflammatory process.  Through the release of cytokines and other 

factors, inflammatory cell populations such as neutrophils and macrophages have long 

been associated with CNS toxicity (Chao et al., 1992; Bao et al., 2002; Shamash et al., 

2002; Donnelly et al., 2008).  Various groups have further demonstrated that attenuation 

of these inflammatory mediators is beneficial and promotes neurologic recovery (Giulian 

et al., 1990; Blight, 1994; Popovich et al., 1999; Gris et al., 2004; Pannu et al., 2005; 

Beril et al., 2007).  However, it has also been suggested that inflammation may play a 

dual role in neural recovery and may have significant beneficial aspects.  As surveyors of 

the CNS, microglia have been hypothesized to have a clearing mechanism after spinal 

cord injury, eliminating debris and reducing the presence of any factors that might play 

an inhibitory role in CNS repair.  These cells are known for their cytotoxic capabilities 

but they have also been shown to secrete trophic factors for both neurons and glia (Banati 

and Graeber, 1994; Kreutzberg, 1996).  There is also evidence that macrophages may 

have a neuroprotective role in the CNS (Rimaniol et al., 2000; Yin et al., 2006).

The concept of protective autoimmunity has been championed by some with the 

implication that enhancement rather than attenuation of the immune response is necessary 

to promote CNS recovery (Schwartz and Kipnis, 2001, 2002; Yoles et al., 2001). 

Experimental data revealed that augmentation of the immune response via passive or 

active immunization with myelin basic protein limited secondary degeneration and 

130



www.manaraa.com

improved functional recovery after SCI (Hauben et al., 2000, 2001).  As a result, efforts 

have been made to design vaccines for various neurodegenerative diseases as well as for 

CNS trauma (Schwartz, 2001).  However, the concept of protective autoimmunity also 

runs counter to the classic concept of T cells as pathologic entities.  Using T cells isolated 

from spinal injured rats, Popovich et al. (1996) demonstrated that injection into naïve rats 

resulted in neurological deficit and pathology reminiscent of EAE.  Subsequent studies 

using transgenic mice and athymic nude rats also support the traditional view of the T 

cell as a pathogenic entity (Jones et al., 2002; Potas et al., 2006).   Interestingly, 

independent efforts to replicate the original experimental vaccine protocols of Hauben et 

al. (2000, 2001) failed to demonstrate any benefit and in fact revealed that functional 

recovery was impaired with vaccination (Jones et al., 2004).  This has raised some 

questions regarding the safety and utility of intentionally activating CNS-reactive T cells 

(Popovich and Jones, 2003; Jones et al., 2004).

It is clear therefore that the only conclusion that can be made regarding the 

inflammatory response is that it is quite complex and these studies only bolster the notion 

that the role of inflammation cannot be succinctly distilled as either beneficial or 

detrimental.  In this present study we showed that administration of FTY720 dramatically 

reduced T cell infiltration into the spinal cord lesion site and enhanced locomotor 

recovery as well as tissue preservation after SCI.  Although the locomotor enhancement 

observed in the open field and inclined plane tests was modest, frequency analysis of the 

open field data highlighted the differences between treatment groups.  By the end of the 

study, the vast majority of animals in the treated group exhibited at least occasional 
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coordination whereas only a minority of animals in the vehicle group exhibited this 

milestone.  Previously reported studies by Gonzales et al. (2003) using a mouse spinal 

hemisection model, also showed similar results after T cell infiltration was inhibited 

using a neutralizing antibody to a T cell chemoattractant chemokine.  Similarly, Ibarra et 

al. (2003) showed that pharmacologic inhibition of T cell responses to spinal cord 

antigens using cyclosporine improved functional recovery after SCI.

The results from this present study would then imply that the T cells attenuated by 

FTY720 are deleterious in the process of recovery.  Since FTY720 is not specific for all 

inflammatory cell populations, it may be that treatment is inhibitory to pathologic 

lymphocytic populations only and not to that subset which may have a beneficial role. 

However, it is clear that the mechanism of action of FTY720 is not solely limited to 

immunomodulation.  In vitro studies have shown that FTY720 directly protects 

oligodendrocyte progenitor cells (OPC) from apoptosis (Coelho et al., 2007).  Studies 

have also shown that FTY720 acts on endothelial cells and helps to preserve vascular 

integrity and barrier function (Brinkmann et al., 2004).  It is therefore possible that these 

actions of FTY720 on vascular integrity and OPC cytoprotection could also play a role in 

the observed effects of the drug treatment.

Another observation that was made in our present study was the effect of FTY720 

on bladder function.  Drug treatment dramatically reduced post-void residuals 

immediately after SCI and reduced the number of days required to regain spontaneous 

bladder function.  This observation suggests a direct drug effect on bladder function 

independent of spinal cord recovery.  A link between FTY720 and bladder function is 
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supported by in vitro studies on rabbit bladder smooth muscle which showed that 

FTY720 can regulate detrusor muscle tone (Watterson et al., 2007).   We also noted a 

dramatic reduction in the incidence of hemorrhagic cystitis after SCI.  This phenomenon 

is known to occur after experimental SCI but the mechanism of this process has yet to be 

well characterized.  Experimental studies have linked inflammatory changes in the spinal 

cord with disruption of bladder epithelium and hemorrhage (Doggweiler et al., 1998; 

Apodaca et al., 2003).  Interestingly, studies have shown that FTY720 can act on 

endothelial cells and help to preserve vascular integrity and barrier function (Brinkmann 

et al., 2004).  Thus, it is possible that this preservation of vascular integrity is responsible 

for the reduced incidence of hemorrhagic cystitis observed in this study.

The effect of FTY720 on bladder function, although dramatic, represented a 

possible confounder and limitation of this study.  Overall, fewer UTIs were diagnosed in 

the treated as compared to vehicle group which was reflected in the number of antibiotic 

courses administered (6 vs. 14).  This difference is hypothesized to be due to the robust 

effect of treatment on bladder function.  Animals that were able to void more efficiently 

would retain less urine and therefore be at lower risk for UTI.  Theoretically, this could 

then confound our analysis since improved overall systemic status could result in 

improved clinical scores in the open-field and inclined plane.  However, there is a notable 

disparity in the time frame in which the effects of FTY720 on locomotor scores and 

bladder function are noted.  If the above conjecture were true, then no disparity should be 

present and locomotor improvement should be noted coincident with bladder function 

improvement.  Furthermore, there were no differences noted among treatment groups in 
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terms of body weight change, suggesting that overall systemic status was similar among 

the groups.  Finally, morphometric analysis also supports the neuroprotective capabilities 

of FTY720 as improved bladder function would presumably not result in enhanced tissue 

preservation in the spinal cord.  Taken together this leads us to conclude that 

administration of FTY720 enhances locomotor function independent of bladder function 

and systemic status.

Our results suggest that treatment with FTY720 not only reduces the adaptive 

immune response but also affords neuroprotection and enhances bladder function after 

injury.  Given the complexity of the posttraumatic inflammatory cascade, the results of 

this study do not clarify the role of T cells in CNS recovery.  However, these results do 

reinforce the growing body of knowledge suggesting immunomoduation as a possible 

therapeutic strategy in SCI.
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Figure A.1.  (A) Weekly hind limb evaluations were completed by putting the animals 
one at a time on an open field for 4 min.  (B) In addition, assessment of functional 
recovery included an inclined plane task.
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Figure A.2.  FTY720 treatment reduces T cell infiltration into the spinal cord after 
injury.  After SCI, animals were injected with either vehicle or FTY720 for 1, 4, or 7 d. 
A 1-cm segment of the cord centered on the impact site was then harvested from each 
animal and prepared for flow cytometry.  (A) Representative dot blots of the injury site of 
a vehicle injected animal showing the 7-AAD+ population used for analysis (Gate P5). 
(B) Representative dot blots of the injury site of a vehicle injected animal showing the 
percentages of CD3+/CD4+ double-positive cells (Gate Q2) and of (C) CD3+/CD8+ 
double-positive cells (Gate Q2) within the 7-AAD+ gate.  (D) A graphical summary of 
the mean percentages of 7-AAD+ events that were CD3+/CD4+ and CD3+/CD8+ for 
treated and vehicle animals at the various days post-injury (DPI).  As shown by this flow 
cytometric paradigm, FTY720 treatment reduces infiltration of both CD3+/CD4+ helper 
and CD3+/CD8+ cytotoxic T-cell populations into the cord after SCI.  *p < 0.05 
compared with vehicle treated rats.
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Figure A.3.  FTY720 promotes hind limb recovery after spinal cord injury.  After SCI, 
animals were randomly placed into one of three groups: injury only, vehicle, and 
FTY720-treated.  Functional assessments were performed weekly for 6 weeks.  (A) Open 
field assessment of hind limb locomotor function using the BBB scale.  Starting at week 
3, treated rats as a group performed significantly better than the control groups.  No 
significant differences were noted between vehicle and injury only groups at any time 
point.  (B) The inclined plane test.  Treated animals outperformed members of the control 
groups starting at week 2 and continued to do so for the duration of the study.  (C) For all 
time points, linear regression analysis revealed a very strong correlation between the 
BBB and inclined plane scores (r = 0.87).  *p < 0.05 compared with injury only and 
vehicle treated rats.
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Figure A.4.  FTY720 improves bladder function after spinal cord injury.  Manual bladder 
expression was performed three times daily for the first week after SCI and two times 
daily thereafter until spontaneous micturation was reestablished.  The residual urine 
volumes of each animal were measured and recorded during each expression session to 
provide an average daily urine volume for the first 2 weeks post-SCI. Furthermore, 
during urine collection, gross hematuria was noted when observed.  (A) The mean 
residual urine volumes of treated rats were consistently and significantly lower than that 
of the control groups.  (B) Days required until spontaneous micturation was reestablished 
as defined by an average daily volume of less than 2 ml for 3 consecutive days.  Treated 
animals did not require extended assistance in expelling urine and regained spontaneous 
bladder function by day 6.  Control animals did not reach such a milestone until day 10. 
(C) FTY720 treatment significantly reduced the incidence of gross hematuria as 
compared to control groups. *p < 0.05 compared with injury only and vehicle treated rats.
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Figure A.5.  FTY720 treatment does not adversely affect body weight.  Animal body 
weights were measured and recorded throughout the duration of the behavioral outcome 
study. Treatment with FTY720 did not affect body weight following SCI. (The horizontal 
axis is presented on a logarithmic scale.)
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Figure A.6.  Myelin sparing correlates with locomotor recovery.  At the conclusion of 
the behavioral outcome study (6 weeks post-SCI), animals were sacrificed and cords 
were harvested and cryosectioned.  Sections at the level of the SCI epicenter were stained 
with EC to determine the extent of white matter sparing.  (A) A representative EC-stained 
cross-section at the level of the SCI epicenter from a vehicle animal.  (B) A comparable 
section from a FTY720-treated animal.  (C) At the level of the SCI epicenter, FTY720 
treatment resulted in a significant increase in the percentage of spared myelin as 
compared to vehicle treatment.  (D) A linear regression analysis of the final BBB 
locomotor scores and spared myelin percentages at the epicenter exhibited a very strong 
correlation (r = 0.75).  (E) In addition to the myelin sparing analysis completed at the 
injury epicenter, adjacent cord sections of every 0.5 mm up to 5 mm away from the 
epicenter were similarly processed and analyzed.  This analysis revealed that FTY720 
treatment resulted in a significant increase in the percentage of spared myelin as 
compared to vehicle treatment in adjacent areas of the injury epicenter, especially regions 
caudal.  (Negative distances on horizontal axis denote rostral direction whereas positive 
denote caudal direction.)  Scale bars (A and B) = 300 μm.  *p < 0.05 compared with 
vehicle treated rats.
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BBB Locomotor Rating Scale
0 No observable hind limb movement
1 Slight movement of one or two joints, usually the hip and/or knee
2 Extensive movement of one joint or extensive movement of one joint and slight movement of one other joint
3 Extensive movement of two joints
4 Slight movement of all three joints of the hind limb
5 Slight movement of two joints and extensive movement of the third
6 Extensive movement of two joints and slight movement of the third
7 Extensive movement of all three joints of the hind limb
8 Sweeping with no weight support or plantar placement of the paw with no weight support
9 Plantar placement of the paw with weight support in stance only (i.e., when stationary) or occasional, 

frequent, or consistent weight supported dorsal stepping and no plantar stepping
10 Occasional weight supported plantar steps, no forelimb-hind limb coordination
11 Frequent to consistent weight supported plantar steps and no forelimb-hind limb coordination
12 Frequent to consistent weight supported plantar steps and occasional forelimb-hind limb coordination
13 Frequent to consistent weight supported plantar steps and frequent forelimb-hind limb coordination
14 Consistent weight supported plantar steps, consistent forelimb-hind limb coordination; and predominant paw 

position during locomotion is rotated (internally or externally) when it makes initial contact with the surface 
as well as just before it is lifted off at the end of stance or frequent plantar stepping, consistent forelimb-hind 
limb coordination, and occasional dorsal stepping

15 Consistent plantar stepping and consistent forelimb-hind limb coordination; and no toe clearance or occasional 
toe clearance during forward limb advancement; predominant paw position is parallel to the body at initial 
contact

16 Consistent plantar stepping and consistent forelimb-hind limb coordination during gait; and toe clearance 
occurs frequently during forward limb advancement; predominant paw position is parallel at initial contact 
and rotated at lift off

17 Consistent plantar stepping and consistent forelimb-hind limb coordination during gait; and toe clearance 
occurs frequently during forward limb advancement; predominant paw position is parallel at initial contact 
and lift off

18 Consistent plantar stepping and consistent forelimb-hind limb coordination during gait; and toe clearance 
occurs consistently during forward limb advancement; predominant paw position is parallel at initial contact 
and rotated at lift off

19 Consistent plantar stepping and consistent forelimb-hind limb coordination during gait; and toe clearance 
occurs consistently during forward limb advancement; predominant paw position is parallel at initial contact 
and lift off; and tail is down part or all of the time

20 Consistent plantar stepping and consistent coordinated gait; consistent toe clearance; predominant paw 
position is parallel at initial contact and lift off; tail consistently up; and trunk instability

21 Consistent plantar stepping and coordinated gait, consistent toe clearance, predominant paw position is 
parallel throughout stance, consistent trunk stability, tail consistently up

Terms and Operational Definitions
Slight partial joint movement through less than half the range of joint motion
Extensive movement through more than half of the range of joint motion
Sweeping rhythmic movement of hind limb in which all three joints are extended, then fully flex and extend again; 

animal is usually lying on its side, the plantar surface of paw may or may not contact the ground; no weight 
support across the hind limb is evident

No Weight Support no contraction of the extensor muscles of the hind limb during plantar placement of the paw; or no elevation 
of the hindquarter

Weight Support contraction of the extensor muscles of the hind limb during plantar placement of the paw, or elevation of the 
hindquarter

Plantar Stepping paw is in plantar contact with weight support then the hind limb is advanced forward and plantar contact with 
weight support is reestablished

Dorsal Stepping weight is supported through the dorsal surface of the paw at some point in the step cycle
forelimb-hind limb 
Coordination

for every forelimb step an hind limb step is taken and the hind limbs alternate

Occasional less than or equal to half; <50%
Frequent more than half but not always; 51-94%
Consistent nearly always or always; 95-100%
Trunk Instability lateral weight shifts that cause waddling from side to side or a partial collapse of the trunk
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Table A.1.  The 21-point BBB locomotor scale used to rate functional recovery after 
SCI.  (Adapted from Basso et al., 1995)
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Percentage of Animals within Each Group Reaching Locomotor Milestones

Day 28 Post-Injury Day 35 Post-Injury Day 42 Post-Injury
PS C PS C PS C

Injury Only 44.4% (4/9) 11.1% (1/9) 55.6% (5/9) 11.1% (1/9) 66.7% (6/9) 33.3% (3/9)
Vehicle 50% (5/10) 10% (1/10) 70% (7/10) 20% (2/10) 80% (8/10) 20% (2/10)
FTY 720 81.8% (9/11)* 63.6% (7/11)** 100% (11/11)* 63.6% (7/11)** 100% (11/11)* 81.8% (9/11)**
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Table A.2.  Animals treated with FTY720 are more likely to reach locomotor milestones. 
Frequency analysis of rats achieving consistent plantar stepping (PS) or occasional 
coordination (C) between 4 and 6 weeks after injury.  *p < 0.05 compared with injury 
only and vehicle treated rats.  **p < 0.005 compared with injury only and vehicle treated
rats.
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